
DOI: 10.2195/lj_proc_en_li_202410_01

A scalable deep reinforcement learning approach for 
minimizing the total tardiness of the parallel machine

scheduling problem

Funing Li, Ruben Noortwyck, Robert Schulz

Institute of Mechanical Handling and Logistics
Faculty 07

University of Stuttgart

Various problems in the logistics field can be modeled
as parallel machine scheduling problem (PMSP),

which involves the optimized assignment of a set of jobs
to a collection of parallel machines. Deep reinforcement
learning (DRL) has demonstrated promising capability
in solving similar problems. To this motivation, we pro-
pose a practical reinforcement learning-based frame-
work to tackle a PMSP with new job arrivals and family
setup constraints. We design a variable-length state ma-
trix containing information of all jobs and employ a Re-
current Neural Network (RNN) model to represent the
DRL agent. In the numerical experiment, we first train
the agent on a small PMSP instance with 3 machines and
30 jobs. Then we implement this trained agent to solve a
set of instances with significant larger instance. Its per-
formance are also compared with two dispatching rules.
The extensive experimental results demonstrate the scal-
ability of our approach and its effectiveness across a va-
riety of scheduling scenarios.

[Logistics scheduling, Deep reinforcement learning, Dy-
namic parallel machine scheduling problem, Recurrent neu-
ral network]

1 Introduction

Logistics plays a crucial role in many areas, whether it’s in
supplying stores, fulfilling online orders, or in production.
Although logistics is very important, there is reluctance to
pay for it, as it is non-value-adding. As a result, logistics
must always be cost-effective and continuously optimized.
Optimization opportunities include the implementation of
efficient supply chains, the use of modern technologies such
as automation or artificial intelligence, and the improvement
of route planning or warehouse management. In addition to

cost optimization, punctuality in logistics is essential. Deliv-
ery delays can have significant financial consequences, such
as contractual penalties or production stoppages, which can
impact the entire value chain. Therefore, it is important that
logistics processes are designed to be efficient and regularly
optimized.

Against this background, several researchers have opti-
mized the logistics processes by modeling the related prob-
lems as a parallel machine scheduling problem (PMSP). The
PMSP involves assigning a sequence of jobs to a set of ma-
chines that operate simultaneously, which offers a practical
mathematical framework for optimization and development.
For example, [1] describe the problem of scheduling of elec-
trical vehicle to charging station as a PMSP and then mini-
mize the total charging time on all vehicles. [2] formulate a
distribution problem of semiconductors on processing ma-
chines also as a PMSP model. Maintenance strategies are
then developed based on this model.

In this work, we focus on a particular instance of the
PMSP characterized by constraints related to new job ar-
rivals and family setups. This model effectively abstracts the
scheduling process pertinent to the modern manufacturing
environment described previously. The objective function is
to minimize the total tardiness. A detailed description is pro-
vided in Section 2.

As a widely-used mathematical model, the methods for
solving the PMSP have been extensively studied over the
past few decades. The majority of conventional approaches
for tackling these problems can be broadly classified into
two categories: rule-based methods and metaheuristic algo-
rithms [3]. However, rule-based methods often fail to deliver
high-quality results, since they rely on predefined rules that
do not account for the unique characteristics of each specific
scheduling problem. Meanwhile, metaheuristic algorithms
require numerous iterations for yielding an appropriate so-
lution for one instance, which is computationally expensive.

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084
Article is protected by German copyright law

Page 1



Furthermore, both conventional approaches struggle to re-
spond to dynamic environments.

To obtain a proper solution in a time-efficient manner,
several research studies have employed reinforcement learn-
ing (RL), including deep reinforcement learning (DRL)
based approach to solve the PMSP [4]. RL is a promising
branch in the field of machine learning and has achieved
remarkable development in many challenging decision-
making tasks, such as controlling the tokamak plasma for
nuclear fusion [5] and discovering faster matrix multipli-
cation algorithms [6]. In the RL-based approach, an agent
is employed to learn an optimal policy through interaction
with the environment. This mechanism aligns well with the
process of most scheduling problems, making RL a poten-
tial promising alternative solution for the PMSP.

However, even though RL-based approaches show su-
periority over rule-based methods and metaheuristic algo-
rithms in solving PMSPs, they still have limitations. First,
most of them are not tackle the scheduling problem in an
end-to-end manner, which means they cannot select job di-
rectly based on the raw information of the manufacturing
environment. On the contrary, they rely on hand-crafted
state features and pre-defined dispatching rules [7, 8, 9],
which require extensive domain knowledge and lead to te-
dious work. Moreover, with the integration of hand-crafted
state features and pre-defined rules, human bias might be
introduced, and the potential of the data-driven method, i.e.,
RL, could not be fully leveraged. Second, the majority of the
existing RL-based approaches need to be re-designed and
re-trained when being applied to larger instances [10, 11],
which is highly time-consuming and hence restrict their
practical applicability in diverse and evolving manufactur-
ing environments.

With the motivations above, we propose a highly adapt-
able and scalable DRL approach for solving the PMSPs.
First, we formulate the instance of PMSP with variable-
length representation of states and actions to enable the
DRL agent to solve instances of any scales. Meanwhile, we
employ a specific deep neural network called recurrent neu-
ral network (RNN) to approximate the policy of the agent,
enabling the agent to process the variable-length matrix. Fi-
nally, we compare the proposed DRL-based approach with
several conventional methods on various instances, demon-
strating its efficiency and scalability.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the background of RL and offers a detailed
description of the PMSP that to be solved in this work. The
details of the proposed approach is established in Section 3.
Section 4 provides the training process of the agent and its
performance comparisons with two comparative methods.
Finally, conclusions are drawn in Section 5.

2 Background

2.1 Parallel machine scheduling problem

PMSP involves assigning a sequence of jobs to a set of ma-
chines that operate simultaneously, where each job has its
individual processing time and due dates. Job completed af-
ter its due date results in tardiness. The objective of this
work is to optimize the allocation of jobs to minimize the
sum of tardiness incurred on all jobs, which is referred as
total tardiness.

The notations used for the problem description is given
in the upper part of the Table 1. With this notations, the
objective function can be formulated as followed:

TT =
n∑

j=1

max(0, Cj − dj) (1)

Moreover, two constraints are taken into consideration
for a more realistic representation of modern manufacturing
environments. The relevant notations is given at the lower
part of the Table 1.

• The family setups. In real manufacturing environ-
ments, jobs are usually categorized into several fam-
ilies according to their characteristics, where se-
quential processing two jobs from different families
requires an additional setup time in between [12].

• The new job arrivals constraints. In modern dynamic
manufacturing environments, the arrival of unfore-
seen new jobs makes real-time adjustments to the
schedule necessary. Under this constraint, besides
the initial jobs, new batches of jobs will be continu-
ously introduced into the system.

2.2 Reinforcement learning

RL approaches aim to teach an agent a policy of execut-
ing actions in order to maximize the cumulative reward that
the agent receives from the interaction with its environment
[13]. This environment is generally modeled as a Markov
Decision Process (MDP), which is a mathematical frame-
work to describe decision-making problems. An MDP can
be represented by a 5-tuple representation (S,A, p,R, γ),
where S is a set of all possible states, A is a set of all ac-
tions that the agent can take, p is the state-transition func-
tion which provides the probability of a transition between
every pair of states under each action, R is a reward func-
tion which generates a real value to each state-action pair,
γ ∈ (0, 1) is the discount factor that balances immediate
versus long-term rewards.

At each decision time point t, the agent observes the cur-
rent state of the environment st ∈ S and then conducts the
action at ∈ A according to the policy π, which is a map-
ping from states to actions. In response to the action, the

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084
Article is protected by German copyright law

Page 2

DOI: 10.2195/lj_proc_en_li_202410_01



Table 1: Notations for PMSP

Notations for basic PMSP
t current time
nt number of available jobs at time point t

ninit total number of initial jobs
m total number of machines
j, g index of jobs
i, k index of machines
Jj the jth job
Mi the ith machine
pj processing time of Jj
dj due date of Jj
Cj completion time of Jj

Constraint-related notations
Nfamily number of families

fJj family of Jj
fMi

setup status, family of the job being processed by Mi

Nbatch number of new job batches
nnew number new jobs per one batch
rj arrival time of Jj , is 0 if Jj is initial available

environment changes to the next state st+1 with transition
probability p(st+1 | st, at) and receives an immediate re-
ward calculated by R(st, at). To a long-term process, the
return, Gt is defined as the total accumulated reward from
time step t onwards, discounted by γ. The definition is given
as follows:

Gt = R(st, at) + γR(st+1, at+1) + γ2R(st+2, at+2) + . . .
(2)

The goal of RL is to find an optimal policy π that maximizes
the discounted cumulative reward. The objective function
J(π) can be described by the following expression:

J(π) = max
π

∞∑
t=0

γtR(st, at) (3)

3 Proposed method

To implement DRL-based approach, we first carefully for-
mulated the considered PMSP as MDP as described in Sec-
tion 2. Then we employ a specific deep neural network,
namely RNN, to represent the policy of the agent. The RNN
is updated by RL algorithm, depending on the rewards re-
turned to the agent by the environment.

Figure 1 demonstrates the interaction mechanism be-
tween the agent and the scheduling environment. Accord-
ing to this mechanism, the state is discrete and the decision
point for the agent is defined as every time a machine be-
comes idle. State transition occurs when a job is selected
for this current idle machine.

Figure 1: Overall Scheduling Framework

3.1 State representation

Based on the interaction mechanism shown in Figure 1, we
adapt the concept of state representation from our previous
work [14]. The state matrix will be the input of the agent at
each decision point, based on which the agent takes corre-
sponding action.

Figure 2 demonstrates the state matrix at time point t,
while Table 2 provides the details of the job and machine
information. Each state matrix contains the the processing
time, the due date and the family of all jobs, while also
presents the current time and the setup status of the current
idle machine. Therefore, the agent can calculate a priority
for each job with a global perspective, in which the infor-
mation of all jobs and the the information of the current idle
machine are taken into consideration.

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084
Article is protected by German copyright law

Page 3

DOI: 10.2195/lj_proc_en_li_202410_01



Moreover, this state matrix is characterized with a vari-
able length. The number of rows is equal to the number
of available jobs at the given time point, where each row
provides the information of the corresponding job and the
current idle machine. The number of rows decreases with
the selection of jobs and increases with the arrival of new
jobs. With this flexible state representation, instances with
arbitrary scale can be formulated and then processed by the
agent, yielding a high flexibility and scalability.

Figure 2: Variable-Length State Matrix with only Jobs
Information

Table 2: Job and machine information

State features in the state matrix

Job features
processing time pj

due date dj
family fJj

Machine features current time t
family of the previous job fMi

3.2 Action representation

To fully leverage the potential of the RL as a data-driven
method, the action of the agent is designed to the index of
jobs. Therefore, the agent can select job directly without re-
lying on any pre-defined rules. In particular, the agent first
calculate the priorities of all available jobs based on the state
matrix. The vector containing these priorities serves as the
action space. Since the number of available jobs varies over
the process, the action space also has a variable dimensions.

The agent will then select the most proper job for the
current idle machine. To maintain explorative of the agent
during training, we utilize the Softmax function to convert
the priorities into a probability distribution. The Softmax
function is defined as follows:

yj =
exj∑nt

k=0 e
xk

(4)

, where xj and xk are the priorities of the jth job and kth job
respectively, while yj is the probability that the jth job will
be selected. It can be seen that the job with higher priority
corresponds to a higher probability of being selected. This

function ensures a wider range of selection can be explored
in the early training stage, in which the calculated priorities
of the network are less accurate.

3.3 Neural network structures

Without loss of generality, the DRL-agents are usually rep-
resented by fully-connected neural networks, which is also
known as the multi-layer Perceptron (MLP). However MLP
is not suitable for processing our proposed states and ac-
tions with variable length, since it requires fixed-size input
and can only output fixed-size vectors. When new jobs ar-
rive and the total job number exceeds this pre-defined size,
the entire network needs to be reconstructed and retrained,
which is extremely time-consuming and restricts the appli-
cations.

To handle the state- and action representation with vari-
able length, we apply the RNN to represent the agent. RNNs
are dominant in sequence transduction problem such as nat-
ural language translation [15] and powering conversational
robot [16]. They process matrix in a row-independent man-
ner and thus highly appropriate for handling matrix with
variable length.

Figure 3 depicts the RNN processing an PMSP instance
with only two jobs, where the machine information is omit-
ted for a clearer presentation. It can be seen that at the be-
ginning of the scheduling process, the memory cell of the
RNN is in the initial state. Then the RNN computes the in-
formation of the first job into its priority and simultaneously
summarizes it into the memory cell. When calculating the
priority of the second job, the summarized information of
the first job will be read from the memory cell by the RNN
and taken into account in the priority calculation. Then the
information in the memory cell will be updated for the sub-
sequent jobs, which could be considered as the summarized
information of the first and second jobs.

3.4 Reward function design

Given that the objective is to minimize total tardiness, equat-
ing to the cumulative sum of all delays incurred in the
scheduling process, it becomes intuitive in our MDP frame-
work to define the reward as the negative of tardiness. Mean-
while, when the total tardiness remains 0, imply an optimal
schedule, a large positive reward Ropt is granted.

Moreover, to provide more guidance to the agent, we
add an additional reward function related to family setups.
This additional reward function rooted in the observation
that frequent changes in setup state consequently lead to in-
creased processing time. Hence, a schedule of high qual-
ity intuitively features fewer setup changes, as each addi-
tional setup can heighten the probability of incurring tar-
diness for the subsequent jobs. In particular, the agent re-
ceives a positive additional reward Rfamily when it selects

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084
Article is protected by German copyright law

Page 4

DOI: 10.2195/lj_proc_en_li_202410_01



Figure 3: Working mechanism of the RNN

a job that identical to the setup state among jobs from dif-
ferent families, thereby avoiding additional setup time; Con-
versely, the agent is penalized with a negative additional re-
ward −Rfamily if it chooses a job from a different family,
despite the availability of same-family jobs.

The procedure to calculate the reward is given in the Al-
gorithm 1. In this work, we set Rfamily and Ropt to con-
stants with values of 1 and 200, respectively.

3.5 Neural network updating algorithm

Based on the reward function, we utilize the Proximal Pol-
icy Optimization (PPO) [17] to update the DRL agent, i.e.,
the RNN. This algorithm is realized by actor-critic architec-
ture. The actor network takes the current state as input, then
executes the previously mentioned task of calculating the
priority for each available job. The critic network also takes
the current state as input but estimates the value of the states
based on the current policy, which is a scalar and utilized for
updating the actor network. Both networks are represented
by RNN. Figure 4 illustrates the interaction mechanism be-
tween the actor network and the critic network.

Figure 4: Cooperation mechanism between the actor
network and the critic network

Algorithm 1: Reward Function Design

Initialization: st ← s0, nt ← n, reward ←
0, Tardiness← 0, TT ← 0
while nt ̸= 0 do

at ← πθ(st)
i← at
if fi = fM then

for j ← 0 to nt do
if fj ̸= fM then

reward← reward+Rfamily

break
end if

end for
else

for j ← 0 to nt do
if fj = fM then

reward← reward−Rfamily

break
end if

end for
end if
if t+ pi/vM > di then
Tardiness← (t+ pi/vM − di)

else
Tardiness← 0

end if
reward← reward+ Tardiness
TT ← TT + Tardiness
st ← st+1, nt ← nt − 1

end while

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084
Article is protected by German copyright law

Page 5

DOI: 10.2195/lj_proc_en_li_202410_01



4 Numerical experiments

In this section, we will first train the proposed agent on one
training PMSP instance with relative small scale. Then the
well-trained agent is then employed to solve various test-
ing PMSP instances with larger scale. Its performance is
then compared with the results of two dispatching rules. The
comparison demonstrates the flexibility and the effective-
ness of our approach.

4.1 Training process of the agent

We develop our DRL agent in PyTorch. The proposed agent
is trained in an RL environment that simulates a PMSP. We
construct the environment based on OpenAI Gym [18]. The
training process and the comparison process that follows are
conducted on a PC with Intel Core i911900KF@3.50GHz
CPU, 16GB RAM, and a single Nvidia RTX 3080 GPU.

Table 3 gives the details of the training instance. This in-
stance describes a production environment, which contains
3 machines and 20 initial jobs from 6 families. New jobs
enter the production environment in batches of 5 at a con-
stant time interval of 10 time units after the 20th time unit.
A total of 2 such batches are added to simulate dynamic and
fluctuating production demands that commonly occur in the
real world.

In addition, the parameters r and R in this table are em-
ployed to generate the due date of the jobs according to the
following uniform distribution [14, 19]:

U(MP (1− r − R

2
),MP (1− r +

R

2
)) (5)

, where the indicator MP refers to the modified cumulative
processing time of all jobs and is calculated as:

MP =

∑n
j=1 pj +

(
n+NF

2 · S
)

m
(6)

, where n is the total number of jobs, which is calculated as
n = ninit +NB ∗ nnew.

The due dates of the new jobs are generated with a mod-
ified distribution [20], ensuring the due date of a job would
not earlier than its arrival time:

U(max((rj+pmax+S),MP (1−r−R

2
)),MP (1−r+R

2
))

(7)

Figure 5 illustrates the training process of the proposed
agent, in which the abscissa is the number of episodes, and
the ordinate is the average total tardiness that the agent
obtained in the previous 20 episodes. The total tardiness
yielded by the agent is marked with a blue line, while a
red line represents the optimal solution, namely zero total
tardiness.

It is evident that, as the training process proceeds, the
curve of total tardiness initially remains at a relatively high

Table 3: Parameter settings of the training instance

Parameter Value
total number of machines m 3
number of initial jobs ninit 20

number of batches NB 2
number of new jobs per batch nnew 5
total number of families of jobs NF 6

processing time of a job pj Unif [5, 15]
average tardiness factor r 0.1

relative range of due dates R 0.2
setup time S 10

level due to the exploration phase, during which the agent is
learning about the production environment. As the agent be-
gins to understand the environment better, the total tardiness
starts to decrease steadily. Eventually, the curve converges
almost to zero. This stable curve and the significant low
level of tardiness indicate that the agent has learned how to
select the most appropriate job based on information about
the production environment as well as the job itself.

Figure 5: Average total tardiness over previous 20 episodes
obtained by the DRL agent in the whole training process,
the optimal solution (0 total tardiness) is marked with a red
line

4.2 Generalization capability of the trained agent

To evaluate the generalization of the proposed approach, the
agent trained in the previous section is then employed on
much larger instances without re-training. The parameters
defining the scales these larger instances are detailed in Ta-
ble 4.

Moreover, to demonstrate the superiority of the pro-
posed approach, we take two classic dispatching rules into
the comparison, namely the First In First Out (FIFO) and

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084
Article is protected by German copyright law

Page 6

DOI: 10.2195/lj_proc_en_li_202410_01



Table 4: Scales of PMSP Instances for Testing

Parameter Value
total number of machines m {8, 10}
number of initial jobs ninit {200, 300, 400}

number of batches NB {2, 3}
number of new jobs per batch nnew {5, 10}

Earliest Due Date (EDD). FIFO rule ignores the features of
the jobs and processes them in the order they enter the sys-
tem, while EDD selects the job with the earliest due date.

The total tardiness of all large instances obtained by
the proposed DRL-based approach and the two comparative
dispatching rules is given in Table 5.

Table 5: Total Tardiness Obtained by Proposed DRL
approach, FIFO, and EDD

m NB nnew ninit DRL FIFO EDD

8

2

5
100 147.14 988.25 225.87
110 31.25 1015.36 358.31
120 74.66 1447.61 205.25

10
100 196.20 1582.08 226.37
110 95.02 1932.57 453.86
120 412.76 2355.34 268.70

3

5
100 98.92 1282.62 228.66
110 143.09 1411.92 429.72
120 111.42 1731.55 215.87

10
100 298.05 2472.53 428.93
110 420.47 2788.94 314.02
120 414.35 3492.54 465.69

10

2

5
100 111.95 719.09 172.95
110 98.68 731.16 174.39
120 169.47 1075.69 109.39

10
100 182.23 1151.08 266.72
110 198.68 1432.16 343.38
120 217.79 1779.10 177.45

3

5
100 29.85 921.66 161.41
110 53.13 1015.65 193.44
120 200.60 1276.47 172.69

10
100 234.90 1817.32 211.78
110 266.88 2082.17 269.77
120 310.18 2651.27 431.90

5 Conclusion

In this work, we develop an RNN-based DRL approach to
address a PMSP, characterizing by new job arrivals and fam-
ily setups constraints. The main contributions of our ap-
proach are its high scalability and the end-to-end scheduling
manner. To be more specific, our approach can directly se-
lect the most appropriate job based on the raw information
from the scheduling environment of arbitrary scales, reduc-

ing laborious manual work and thus increasing the applica-
bility in various scenarios.

To achieve this, we first propose a variable-length state
matrix, allowing it to adapt to scheduling environment of
any scale. To process this variable-length state matrix, we
then utilize an RNN model to represent the DRL agent. This
neural network processes inputs in row-wise manner that
enables it to dynamically handle matrix of any size.

The experimental results validate the scalability and ef-
fectiveness of our approach. We first train the proposed
DRL agent on a instance with 20 initial jobs, 10 new jobs
in 2 batches, and 3 machines. The well-trained agent is then
applied on a set of large-scale instances, where scales rang-
ing from 110 jobs with 8 machines to 150 jobs with 10 ma-
chines. The performance is also compared with the results
of two classic dispatching rules to demonstrate its superior-
ity. Across numerous diverse and large-sized instances, our
method exhibits remarkable scalability and effectiveness.

Looking ahead, there are several promising avenues for
future research building on the foundation of this work.
Given that the PMSP has applications in various fields, our
approach has great potential for providing high-quality solu-
tions. Additionally, incorporating more dynamic constraints
into the model, such as machine breakdowns and mainte-
nance schedules, could further enhance its applicability in
real-world manufacturing environments.

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084
Article is protected by German copyright law

Page 7

DOI: 10.2195/lj_proc_en_li_202410_01



REFERENCES

[1] C. Zhang, Y. Liu, F. Wu, B. Tang, and W. Fan, “Effec-
tive charging planning based on deep reinforcement
learning for electric vehicles,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 1, pp.
542–554, 2020.

[2] Y.-D. Kim, B.-J. Joo, and S.-Y. Choi, “Scheduling
wafer lots on diffusion machines in a semiconduc-
tor wafer fabrication facility,” IEEE Transactions on
Semiconductor Manufacturing, vol. 23, no. 2, pp. 246–
254, 2010.

[3] M. Ðurasević and D. Jakobović, “Heuristic and meta-
heuristic methods for the parallel unrelated machines
scheduling problem: A survey,” Artificial Intelligence
Review, vol. 56, no. 4, pp. 3181–3289, 2023.

[4] B. M. Kayhan and G. Yildiz, “Reinforcement learn-
ing applications to machine scheduling problems: A
comprehensive literature review,” Journal of Intelli-
gent Manufacturing, vol. 34, no. 3, pp. 905–929, 2023.

[5] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey,
F. Carpanese, T. Ewalds, R. Hafner, A. Abdolmaleki,
D. de las Casas, C. Donner, L. Fritz, C. Galperti,
A. Huber, J. Keeling, M. Tsimpoukelli, J. Kay,
A. Merle, J.-M. Moret, S. Noury, F. Pesamosca,
D. Pfau, O. Sauter, C. Sommariva, S. Coda, B. Du-
val, A. Fasoli, P. Kohli, K. Kavukcuoglu, D. Hass-
abis, and M. Riedmiller, “Magnetic control of toka-
mak plasmas through deep reinforcement learning,”
Nature, vol. 602, no. 7897, pp. 414–419, 2022.

[6] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-
Paredes, M. Barekatain, A. Novikov, F. J. R. Ruiz,
J. Schrittwieser, G. Swirszcz, D. Silver, D. Hassabis,
and P. Kohli, “Discovering faster matrix multiplication
algorithms with reinforcement learning,” Nature, vol.
610, no. 7930, pp. 47–53, 2022.

[7] L. Guo, Z. Zhuang, Z. Huang, and W. Qin, “Optimiza-
tion of dynamic multi-objective non-identical paral-
lel machine scheduling with multi-stage reinforcement
learning,” in 2020 IEEE 16th International Confer-
ence on Automation Science and Engineering (CASE).
IEEE, 2020, pp. 1215–1219.

[8] S. Luo, “Dynamic scheduling for flexible job shop
with new job insertions by deep reinforcement learn-
ing,” Applied Soft Computing, vol. 91, p. 106208,
2020.

[9] S. Luo, L. Zhang, and Y. Fan, “Real-time scheduling
for dynamic partial-no-wait multiobjective flexible job
shop by deep reinforcement learning,” IEEE Transac-
tions on Automation Science and Engineering, vol. 19,
no. 4, pp. 3020–3038, 2022.

[10] S. Lang, F. Behrendt, N. Lanzerath, T. Reggelin,
and M. Müller, “Integration of deep reinforcement
learning and discrete-event simulation for real-time
scheduling of a flexible job shop production,” in

2020 Winter Simulation Conference (WSC), 2020, pp.
3057–3068.

[11] C.-L. Liu, C.-C. Chang, and C.-J. Tseng, “Actor-
critic deep reinforcement learning for solving job
shop scheduling problems,” IEEE Access, vol. 8, pp.
71 752–71 762, 2020.

[12] M. M. Liaee and H. Emmons, “Scheduling families of
jobs with setup times,” International Journal of Pro-
duction Economics, vol. 51, no. 3, pp. 165–176, 1997.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction. MIT press, 2018.

[14] F. Li, S. Lang, B. Hong, and T. Reggelin, “A two-stage
RNN-based deep reinforcement learning approach for
solving the parallel machine scheduling problem with
due dates and family setups,” Journal of Intelligent
Manufacturing, vol. 35, no. 3, pp. 1107–1140, 2024.

[15] S. P. Singh, A. Kumar, H. Darbari, L. Singh, A. Ras-
togi, and S. Jain, “Machine translation using deep
learning: An overview,” in 2017 international con-
ference on computer, communications and electronics
(comptelix). IEEE, 2017, pp. 162–167.

[16] M. Dhyani and R. Kumar, “An intelligent chatbot us-
ing deep learning with bidirectional rnn and atten-
tion model,” Materials today: proceedings, vol. 34, pp.
817–824, 2021.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, “Proximal policy optimization algo-
rithms,” arXiv preprint arXiv:1707.06347, 2017.

[18] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba, “Openai gym,”
arXiv preprint arXiv:1606.01540, 2016.

[19] C. N. Potts and L. N. Van Wassenhove, “A branch and
bound algorithm for the total weighted tardiness prob-
lem,” Operations Research, vol. 33, no. 2, pp. 363–
377, 1985.

[20] F. Li, S. Lang, Y. Tian, B. Hong, B. Rolf,
R. Noortwyck, R. Schulz, and T. Reggelin, “A
transformer-based deep reinforcement learning ap-
proach for dynamic parallel machine scheduling prob-
lem with family setups,” Journal of Intelligent Manu-
facturing, pp. 1–34, 2024.

Funing Li, M.Sc., Research Assistant at the Institute of
Mechanical Handling and Logistics, University of Stuttgart.
Phone: +49 711 685 83698
E-Mail: funing.li@ift.uni-stuttgart.de

Ruben Noortwyck, M.Sc., Research Assistant at the Insti-
tute of Mechanical Handling and Logistics, University of
Stuttgart. Phone: +49 711 685 83475

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084
Article is protected by German copyright law

Page 8

DOI: 10.2195/lj_proc_en_li_202410_01



E-Mail: ruben.noortwyck@ift.uni-stuttgart.de

Univ.-Prof. Dr.-Ing. Robert Schulz, Director of the Insti-
tute of Mechanical Handling and Logistics, University of
Stuttgart. Phone: +49 711 685 83771
E-Mail: robert.schulz@ift.uni-stuttgart.de

Address: Institute of Mechanical Handling and Logis-
tics, University of Stuttgart, Holzgartenstraße 15B, 70174
Stuttgart, Germany,

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084
Article is protected by German copyright law

Page 9

DOI: 10.2195/lj_proc_en_li_202410_01


	Introduction 
	Background
	Parallel machine scheduling problem
	Reinforcement learning

	Proposed method
	State representation
	Action representation
	Neural network structures
	Reward function design
	 Neural network updating algorithm

	Numerical experiments
	Training process of the agent
	Generalization capability of the trained agent

	Conclusion

