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Object localization, and more specifically object pose
estimation, in large industrial spaces such as ware-

is commonly encountered in the field of robotics [2, 3],
when grasping, handling, or localizing objects, which is en-
abled and facilitated by a successful a priori estimation of
the 6D pose of the object in question. To visually estimate
the pose of an object, multiple approaches can be taken.
While using a single sensor might be enough, using more
than one might be beneficial as to achieve a higher pose es-
timation accuracy. As such, many industrial environments
already provide the necessary circumstances for a multi-
camera approach, e.g., when exploiting pre-existing infras-
tructure like surveillance cameras or the footage of cam-
eras that AGVs might use for navigation purposes. How-
ever, when using multiple cameras, the amount of footage
that needs to be annotated increases as well. Even while us-
ing a single camera, manual annotation can be cumbersome
and inaccurate [4]. Using more than one view can there-
fore seem unfeasible due to annotation and pre-processing
overhead. In addition, especially for industrial applications,
pre-annotated datasets are rare to encounter and can there-
fore seldom be used to train or test a newly developed pose
estimation model. To mitigate such issues, we propose a
pipeline to annotate monocular images in a fully automated
fashion. The pipeline generates bounding box and mask an-
notations using the projection of 3D object models at their
relative poses, as obtained from the real scene. We also pro-
vide a newly collected multi-view dataset as proof of con-
cept of our pipeline. The contributions of this work are sum-
marized as follows:

• An automated annotation pipeline that outputs
camera-relative 6D object poses and bounding boxes
from multi-camera input streams

• A camera localization method for large indoor
spaces

• A novel dataset for object pose estimation in
industrial-like settings

houses and production facilities, is essential for material 
flow operations. Traditional approaches rely on artificial 
artifacts installed in the environment or excessively ex-
pensive equipment, that is not suitable at scale. A more 
practical approach is to utilize existing cameras in such 
spaces in order to address the underlying pose estima-
tion problem and to localize objects of interest. In or-
der to leverage state-of-the-art methods in deep learn-
ing for object pose estimation, large amounts of data 
need to be collected and annotated. In this work, we pro-
vide an approach to the annotation of large datasets of 
monocular images without the need for manual labor. 
Our approach localizes cameras in space, unifies their 
location with a motion capture system, and uses a set of 
linear mappings to project 3D models of objects of in-
terest at their ground truth 6D pose locations. We test 
our pipeline on a custom dataset collected from a sys-
tem of eight cameras in an industrial setting that mimics 
the intended area of operation. Our approach was able 
to provide consistent quality annotations for our dataset 
with 26, 482 object instances at a fraction of the time re-
quired by human annotators.

[Keywords: Object Pose Estimation Automated Annotation 
Multi-view Localization]

1 INTRODUCTION

6D object pose estimation is the task of determining the spa-
tial pose (i.e., the position and orientation) of a subject of in-
terest along six degrees of freedom, namely along the three 
translational and three rotational axes in space [1]. This task
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counter, which is publicly available, is BigBird [19]. The
dataset is captured through a stationary monocular camera
system that offers five perspectives of the scene. The dataset,
however, includes only household objects, which are differ-
ent in scale, form, and texture from industrial objects.

These datasets vary considerably in size, with datasets
ranging from several hundreds to hundreds of thousands
of images. Such a volume of data is usually manually an-
notated to train machine learning architectures. The effort
is significantly amplified when considering the full pose
annotation needed. Only very few approaches in the lit-
erature try to mitigate the problem by offering annotation
pipelines with some degree of automation. The approaches
in [20, 21] offer annotation tools that facilitate the anno-
tation task. They rely on the keypoint matching between a
projected object model and the input images. The match-
ing process itself is performed manually by human users,
where for each input image the user has to choose the cor-
responding object model along with matching unique key-
points such as corners, blobs, etc. between the two. The ap-
proaches target object detection and object recognition tasks
and do not offer a technique to retrieve the pose of the object
after keypoint matching is performed.

3 DATASET RECORDING

Due to the previously mentioned limitations in object pose
estimation datasets, we contribute a novel dataset that is col-
lected in an industrial-like environment. We call the dataset
Multi-log, in reference to multi-view logistics. Multi-log is
an industrial dataset that targets logistics scenarios in which
large objects in indoor settings are of interest. The dataset
offers a unique combination of wide-angle monocular RGB
images, that are automatically annotated, as discussed in 4.
The dataset was recorded in a small warehouse-like setup, in
which eight monocular RGB cameras are installed as shown
in 1. The cameras are of type Genie Nano C2590 that are
capable of capturing 2 MP images. The distance of an ob-
ject in the area to any of the cameras exceeds 6 m, which
is a major difference between our dataset and existing ones.
The area is also covered with 52 motion capture cameras
that offer accurate poses of the objects, with sub-millimeter
precision. The acquired poses are used in the automated an-
notation process of the objects moving in the scene.

The dataset recording area resembles a small-scale con-
trolled logistics environment. The recording process is per-
formed by deploying the objects in the recording area and
moving them, both randomly and in a pre-determined man-
ner. The movement of tracked objects in such area is cap-
tured by the motion capture system and the RGB camera
system. Using both systems during the capturing process
provides continuous image streams from all eight cameras
and, simultaneously, the ground truth 6D pose of the objects

2 RELATED WORK

We first review the existing approaches addressing the 6D 
object pose estimation task in single-view as well as multi-
view settings. We then discuss relevant multi-view datasets 
and extend our scope to datasets collected in industrial set-
tings. Finally, we discuss existing attempts in the relevant 
literature to automatically annotate camera input streams.

In recent years, several deep learning-based approaches 
have been devised for the task of object pose estimation. 
Such approaches differ in several aspects, including the 
type of input stream, the number of scene perspectives con-
sidered, and the underlying processing stages. In terms of 
methodology, approaches include template-matching meth-
ods such as [5, 6] that rely on a pre-created set of tem-
plates for each object that is associated with ground truth 
poses and matched to scene objects. Feature-based meth-
ods, on the other hand, rely on the extraction and match-
ing of special features such as point-pair features [7] or 3D 
local features [8]. Other methods try to learn the pose of 
scene objects directly from monocular input images [9] or 
from RGB-D data of the scene [10] using end-to-end deep 
learning architectures. Multi-view and learning-based ob-
ject pose estimation approaches in particular have achieved 
significant performance outcomes in recent years, such as 
[11, 12]

For supervised deep learning object pose estimation 
methods, large amounts of training data are a prerequisite. 
Since most of the object pose estimation approaches target 
grasping applications as in [13], the objects found in com-
mon benchmark datasets are either for household or toy-like 
objects [14, 15, 9]. Very few datasets target logistics appli-
cations or objects commonly found in industrial settings. 
Although the T-less dataset [15] includes industrial objects, 
the objects are small-scale and are most similar to those en-
countered in bin-picking scenarios. This is very different, in 
terms of setting, from datasets for large-scale localization, 
using pose estimation as it is done in our work. The datasets 
that are most similar to ours, in terms of the target appli-
cation, are [16, 17, 18]. The LOCO dataset [16] contains 
large industrial objects recorded in logistics settings. How-
ever, the dataset only targets the problem of object detec-
tion and thus does not contain pose information for objects 
of interest. Another dataset that includes slightly larger ob-
jects, in comparison to the commonly used household ob-
jects in pose estimation settings, is the Objectron dataset 
[18]. This dataset contains objects such as chairs, bags, and 
bikes. The dataset is again only concerned with the task of 
object detection with a focus on outdoor settings. The BMW 
dataset [17], on the other hand, is geared towards indoor lo-
gistics settings with full-scale industrial objects. However, 
the dataset is synthetic in nature, with photo-realistic data 
that targets tasks such as classification, object detection, and 
segmentation. Other datasets resemble ours in terms of the 
system layout. In particular, one dataset we were able to en-
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Figure 2: The objects used in Multi-log are a) pallets, b)
cardboard boxes, c) small load carriers, d) mobile robots,
and e) movable workstations.

possible objects in the scene, even if they are not visible in
the camera’s perspective. During the annotation stage (see
4), object projections outside the image plane of each cam-
era are filtered out to obtain only relevant objects for each
camera, ensuring accurate and relevant annotations. In or-
der for our dataset to resemble the BOP format as closely as
possible, we provide mock depth images that are our aggre-
gated masks with a fixed distance from the camera. Thus,
we assume that objects do not occlude one another signifi-
cantly in the collected dataset. We deem this assumption to
be valid due to the elevated vantage point of the cameras
and the large area of operation for objects in the scene. Our
dataset is publicly available.

4 AUTOMATED ANNOTATION PIPELINE

We devise an automated annotation pipeline to simplify the
annotation process for large datasets. The pipeline has three
phases, including unifying the reference frames of the RGB
camera and motion capture systems, computing relative
transformations, and generating annotations. An overview
of the pipeline is provided in the figure mentioned as 4.

Figure 1: Rendering of our research facility, depicting the 
camera system used for our recordings. Enlarged 
representations of two RGB cameras are shown in orange. 
Reflected rays captured via the motion capture system are 
shown in cyan.

in each frame. Objects are moved around using a manually 
controlled mobile robot.

The environment layout during the collection process is 
set up in such a way that it mimics a dynamic production 
facility. The main aim of such a setup is to reduce finger-
printing effects in image detection and segmentation meth-
ods that could be caused by the mostly neutral background. 
The dataset is collected in two different setups that differ in 
the layout and the stationary untracked objects. Untracked 
objects used include shelves, roller racks, and commission-
ing wagons. During any given recording, two to three ob-
jects are moving simultaneously. All objects were used dur-
ing each collection run but were positioned differently. Sam-
ples of the test set in one setting from all eight cameras are 
shown in 3.

The dataset is comprised of five object classes, namely 
pallets, cardboard boxes, small load carriers, mobile robots, 
and movable industrial workstations (see 2). The objects 
have a total of nine physical instances that differ in color and 
texture. Each object is marked in the motion capture system 
for tracking purposes. 3D frame axes are attached virtually 
to the volumetric center of each object at a pre-measured 
location which is consistent with the origin location of the 
3D models collected. We separate the data collection stage 
from the annotation stage to preserve the raw data and to 
increase the recording rate by isolating the computationally 
demanding annotation stage.

The collected images are formatted in a scene structure, 
in accordance with the BOP format [22]. Our format dif-
fers, however, in that we define a scene as being a snap of 
the current environment through our eight-camera record-
ing setup. Thus, each scene could, at most, contain eight 
images. The scene includes multiple objects with different 
poses, but each image is associated with the poses of all
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Figure 3: Sample scene from our dataset as viewed by all
eight RGB cameras.

In the upcoming sections, we discuss the details of each of
the aforementioned annotation pipeline phases. Our source
code is publicly available 1.

4.1 RGB CAMERA LOCALIZATION

In industrial environments, cameras are often mounted for
monitoring purposes, and localizing them with respect to
a fixed reference frame is beneficial for object localization
due to increased system control and flexibility. Finding the
relative poses of objects requires the camera pose since ob-
jects are localized only with respect to the motion capture

1https://anonymous.4open.science/r/bop toolkit-6F86

Figure 4: The automated annotation pipeline developed for
this contribution.

system’s reference frame. Manually measuring camera lo-
calization is challenging due to accumulated errors, and is
dependent on the camera hardware’s design and lens, thus
limiting generalizability.

To deal with these issues, we devised a custom method
to localize the cameras in an adaptable manner. Our ap-
proach uses a tracked checkerboard pattern, as shown in
5, that is detectable by both systems. The pattern is large
enough (841 mm × 1189 mm) to increase the detectability of
its intersection points by the RGB cameras in a manner sim-
ilar to the commonly used Zhang’s method [23] for intrin-
sic camera calibration. For tracking using the motion cap-
ture system, retro-reflective markers have been added ran-
domly to the checkerboard, except for the precisely-located
markers defining the outer boundary points of the upper left
checkerboard box. The motion capture system provides the
location of the checkerboard pattern with respect to the up-
per left corner where the checkerboard’s virtual frame is
attached, as illustrated in 5. Using the known size of the
pattern and the homogeneous transformations between both
systems and the patterns, the location for each RGB camera
can be obtained.

We formulate the problem of localizing the cameras in
space as an object pose estimation problem, where the pose
of a camera is to be obtained with respect to the reference
frame of the motion capture system using a tracked pattern
as an intermediate tool. To this end, we make use of classical
object pose estimation algorithms, namely the Perspective-
n-point (PnP) algorithm [24].

The camera localization process starts by collecting
checkerboard images in a manner similar to that used
in standard camera calibration procedures, such as with
Zhang’s method [23]. The pixel intersection points on the
checkerboard are extracted from the collected images and
concatenated. Simultaneously, the 6D pose of the checker-
board is retrieved by the motion capture system for each im-
age capture. The aim is to retrieve 2D points on the checker-
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board and their corresponding 3D points in space, both of
which would be used by the PnP algorithm to obtain the
relative pose between the camera and the checkerboard pat-
tern. However, as shown in 5a, an offset exists between the
first checkerboard intersection point and its virtual origin
in space. The offset is corrected via a static homogeneous
transformation:

Hchinter
mc = Hchorigin

mc Hchinter

chorigin
(1)

Where Hchinter
mc represents the homogeneous transfor-

mation of the checkerboard pattern’s first intersection point
with respect to the motion capture system reference frame.
H

chorigin
mc is the homogeneous transformation between the

checkerboard pattern’s virtual origin, located in the top left
corner, and the motion capture system. Finally, Hchinter

chorigin

(a)

(b)

Figure 5: (a) A tracked checkerboard pattern was used to
obtain camera intrinsic parameters for each camera and to
unify the reference frame for the motion capture and the
RGB camera systems. (1) shows the object origin in the
motion capture system’s global reference frame. Red and
green axes correspond to the X and Y directions,
respectively, of the virtually attached frame. (2) shows the
X and Y directions (in cyan and magenta, respectively) of
the pixels on the image originating from the first
intersection. (b) The visualization of checkerboard pattern
positions used during the camera localization process. The
camera is situated in the upper right-hand corner.

only done in an initial phase, as shown in 4, until the overlap
of the projected mask with the ground truth masks surpassed
a pre-defined threshold. Once accurate poses for the cam-
eras are ensured, the tuning is halted and the final camera
locations are used to calculate the relative object poses.

is a static homogeneous transformation with a translation 
vector obtained from the dimensions of the checkerboard 
pattern and an identity orientation.

Using 1, the 3D vector representing the corresponding 
point in space to the first intersection point of the checker-
board’s pattern could be obtained. The remaining inter-
section points of the pattern are derived using a homoge-
neous static transformation at each extrapolated point, sim-
ilar to that in 1, with a rotational component that is equal to 
the board’s orientation. 5b shows the resulting extrapolated 
point for each of the pattern’s poses. The concatenated set 
of 2D image points and their corresponding 3D points are 
then passed to the PnP algorithm. Since all 3D points are in 
the motion capture system space, the resulting output of the 
solvePnP algorithm is the camera’s pose with respect to the 
motion capture system’s reference frame. This also unifies 
the reference frames of both systems.

The main aim of the aforementioned steps is to find a 
roughly accurate camera location. The initial camera loca-
tion is subpar due to errors emerging from the detection of 
the 2D intersections of the patterns, as well as the extrapo-
lation of their corresponding 3D points in space. Thus, we 
apply a further tuning step to compensate for the errors in 
the localization process.

The tuning process is performed by manually creating 
binary masks for objects of interest in sample images. A 
range of offsets is defined as the search space of possible 
camera poses with respect to the initially retrieved pose. 
The projection of the 3D models of corresponding objects 
was then obtained at their calculated relative ground truth 
at each entry of the pre-defined camera pose range. The in-
tersection between the binary mask and the projected object 
mask is deduced for each image in the search space. Poses 
for intersections surpassing a pre-defined threshold are ac-
cepted as the final poses of the camera under investigation. 
The process is then repeated for all cameras. The tuning is
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4.2 CALCULATION OF RELATIVE POSES

Datasets collected in a manner similar to our custom dataset,
as discussed in 3, contain global poses of the objects of in-
terest and images thereof. The motion capture system pro-
vides the poses of the objects with respect to its global ref-
erence frame. However, pose estimation is the problem of
finding the pose of the object with respect to the camera
frame. Such a relative transformation is calculated as a re-
sult of a transformation chain between the pre-obtained lo-
cations of the cameras and the global location of the object.
The calculation of the relative transformation is applied to
all objects of interest, in all obtained images, in an offline
manner using the obtained camera pose, as discussed in 4.1,
and the object 6D pose. The transformation chain can be
described as follows:

Hcam
obj = (Hmc

cam)−1Hmc
obj (2)

Where Hcam
obj represents the homogeneous transforma-

tion of the object with respect to the camera (relative trans-
formation). Hmc

cam and Hmc
obj represent the homogeneous

transformations between the camera and motion capture
system, and between the object and motion capture system,
respectively.

The calculation of the relative poses is part of the camera
location tuning procedure, as illustrated in 4, and it enables
the projection of object models onto sample images in order
to match them with ground truth masks, as discussed in 4.1.
It is worth noting that the calculation of the relative poses
of the objects of interest in our custom dataset defaults to
using the final camera locations after the camera tuning step
is carried out.

4.3 ANNOTATION GENERATION

The aim of the annotation generation phase is three-fold:
First, to format the collected data in a scene structure, then
to generate annotations such as masks, bounding boxes, etc.,
and finally to filter invalid images. The relative poses, ob-
tained in the previous phase, are used as the ground truth
poses for the objects captured in the scene. The 3D models
of the objects of interest are then rendered at their respec-
tive ground truth locations, using VisPy visualization library
[25] as part of the BOP toolkit [22], and then projected on
the image plane using the camera parameters. The projec-
tion of the 3D points to pixel locations is accomplished us-
ing the well-known projection matrix [26]:

x = PX (3)

where X is a 4 × 1 vector of a point location in 3D space, x
is a 3 × 1 vector of pixel locations, and P is the projection
matrix defined as:

P = K[R|t] = KR[I|RT t] (4)

where K is the 3 × 3 camera matrix describing the intrinsic
parameters of the camera. R is the 3 × 3 rotation matrix and
t is the 3 × 1 translation vector. The projected models are
then aggregated to get all object masks for each input image.
Projected masks that reside outside an image are filtered.
The pipeline then fits each of the projected object masks
with a 2D bounding box, as shown in 6 to form our final
annotations.

5 RESULTS

The dataset presented in this work consists of 6, 136 im-
ages with 26, 500 different object instances in total. The to-
tal amount of time spent during annotation of all images is
about 13.9 hours. This results in an average of 1.9 seconds
spent on the annotation of each object instance. In compar-
ison to the time spent on manual annotation, our pipeline
results in a substantial increase in annotation speed. A visu-
alization of the results of the individual phases is shown in
6.

(a) (b) (c) (d)

Figure 6: (a) Sample image with various tracked objects,
(b) mask of all visible tracked objects which is used only
initially in the camera localization phase, (c) overlay of
objects’ 3D models at the calculated poses, (d) final object
annotation derived from object masks.

Table 1: Dataset statistics per camera.

Sequence Scenario I Scenario II
Number of instances 16,678 9,804

Number of frames 3,920 2,216
Annotation time [min] 525 307

Scenarios I and II recorded a total of about 26, 500 ob-
ject instances. These object instances are composed of the
five objects selected for this dataset. The dataset images
were recorded at half the available resolution by the cam-
era system, resulting in 1296 × 1024 images. The reduced
resolution enabled stream capturing at a higher frame rate
of about 5 FPS. Individual statistics per scenario are shown
in 1.

Of the total object instance captured over the two sce-
narios, the small load carrier is overly represented due to
the utilization of multiple carrier instances per scenario. In
total, 7, 363 instances of the small load carrier were cap-
tured. This is closely followed by 6, 587 instances of pal-
lets and 6, 403 instances of cardboard boxes. Workstation
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and robot instances were captured the least with 3, 768 and
2, 361 instances respectively. An excerpt of the dataset with
all object instances is shown in 7
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6 CONCLUSION

In this work, we present a pipeline to automatically annotate 
monocular images using ground truth poses of objects of in-
terest. As part of the pipeline, we also devise a methodology 
to localize freely-mounted cameras in space. We test our 
pipeline on a custom dataset collected from an industrial-
like setting. The final results show the efficiency of our an-
notation pipeline. Our approach is generalizable to settings 
where 6D object poses are readily available with respect to 
a fixed reference frame. We would like to extend the testing 
of our pipeline to larger datasets to validate the scaling of 
our methodology. Also, using the annotated data, we would 
like to train baseline architectures for object pose estima-
tion and object detection either from scratch or as part of a 
transfer learning pipeline.
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