Citation and metadata
Recommended citation
Ardissone E, Ulrich S, Kirchheim A (2023). Design and Evaluation of an Automatic Decision System for Gripper Selection in Order Picking. Logistics Journal : Proceedings, Vol. 2023. (urn:nbn:de:0009-14-58233)
Download Citation
Endnote
%0 Journal Article %T Design and Evaluation of an Automatic Decision System for Gripper Selection in Order Picking %A Ardissone, Eleonora %A Ulrich, Stephan %A Kirchheim, Alice %J Logistics Journal : Proceedings %D 2023 %V 2023 %N 1 %@ 2192-9084 %F ardissone2023 %X Grasping objects poses a challenge in the automation of order picking due to the diverse types of objects and complex real-world scenarios, necessitating the selection of an appropriate gripper for each object type. Existing gripper selection methods focus on generalized gripper selection systems able to grasp a large variety of objects in non-cluttered scenarios for handling in industrial applications. Within this paper, a knowledge-based gripper selection method for e-grocery items in cluttered scenarios is implemented as a binary decision tree. The results are validated through empirical tests, demonstrating an overall accuracy of 90.7 %. As the percentage of true negatives is 81.6 %, it is necessary to combine grasping principles to reduce the percentage of True Negatives in the future. %L 620 %K Automatisierung %K Kommissionierung %K E-Grocery %K Greiferauswahl %K automation %K order picking %K gripper selection %R 10.2195/lj_proc_ardissone_en_202310_01 %U http://nbn-resolving.de/urn:nbn:de:0009-14-58233 %U http://dx.doi.org/10.2195/lj_proc_ardissone_en_202310_01Download
Bibtex
@Article{ardissone2023, author = "Ardissone, Eleonora and Ulrich, Stephan and Kirchheim, Alice", title = "Design and Evaluation of an Automatic Decision System for Gripper Selection in Order Picking", journal = "Logistics Journal : Proceedings", year = "2023", volume = "2023", number = "1", keywords = "Automatisierung; Kommissionierung; E-Grocery; Greiferauswahl; automation; order picking; gripper selection", abstract = "Grasping objects poses a challenge in the automation of order picking due to the diverse types of objects and complex real-world scenarios, necessitating the selection of an appropriate gripper for each object type. Existing gripper selection methods focus on generalized gripper selection systems able to grasp a large variety of objects in non-cluttered scenarios for handling in industrial applications. Within this paper, a knowledge-based gripper selection method for e-grocery items in cluttered scenarios is implemented as a binary decision tree. The results are validated through empirical tests, demonstrating an overall accuracy of 90.7 {\%}. As the percentage of true negatives is 81.6 {\%}, it is necessary to combine grasping principles to reduce the percentage of True Negatives in the future.", issn = "2192-9084", doi = "10.2195/lj_proc_ardissone_en_202310_01", url = "http://nbn-resolving.de/urn:nbn:de:0009-14-58233" }Download
RIS
TY - JOUR AU - Ardissone, Eleonora AU - Ulrich, Stephan AU - Kirchheim, Alice PY - 2023 DA - 2023// TI - Design and Evaluation of an Automatic Decision System for Gripper Selection in Order Picking JO - Logistics Journal : Proceedings VL - 2023 IS - 1 KW - Automatisierung KW - Kommissionierung KW - E-Grocery KW - Greiferauswahl KW - automation KW - order picking KW - gripper selection AB - Grasping objects poses a challenge in the automation of order picking due to the diverse types of objects and complex real-world scenarios, necessitating the selection of an appropriate gripper for each object type. Existing gripper selection methods focus on generalized gripper selection systems able to grasp a large variety of objects in non-cluttered scenarios for handling in industrial applications. Within this paper, a knowledge-based gripper selection method for e-grocery items in cluttered scenarios is implemented as a binary decision tree. The results are validated through empirical tests, demonstrating an overall accuracy of 90.7 %. As the percentage of true negatives is 81.6 %, it is necessary to combine grasping principles to reduce the percentage of True Negatives in the future. SN - 2192-9084 UR - http://nbn-resolving.de/urn:nbn:de:0009-14-58233 DO - 10.2195/lj_proc_ardissone_en_202310_01 ID - ardissone2023 ER -Download
Wordbib
<?xml version="1.0" encoding="UTF-8"?> <b:Sources SelectedStyle="" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" > <b:Source> <b:Tag>ardissone2023</b:Tag> <b:SourceType>ArticleInAPeriodical</b:SourceType> <b:Year>2023</b:Year> <b:PeriodicalTitle>Logistics Journal : Proceedings</b:PeriodicalTitle> <b:Volume>2023</b:Volume> <b:Issue>1</b:Issue> <b:Url>http://nbn-resolving.de/urn:nbn:de:0009-14-58233</b:Url> <b:Url>http://dx.doi.org/10.2195/lj_proc_ardissone_en_202310_01</b:Url> <b:Author> <b:Author><b:NameList> <b:Person><b:Last>Ardissone</b:Last><b:First>Eleonora</b:First></b:Person> <b:Person><b:Last>Ulrich</b:Last><b:First>Stephan</b:First></b:Person> <b:Person><b:Last>Kirchheim</b:Last><b:First>Alice</b:First></b:Person> </b:NameList></b:Author> </b:Author> <b:Title>Design and Evaluation of an Automatic Decision System for Gripper Selection in Order Picking</b:Title> <b:Comments>Grasping objects poses a challenge in the automation of order picking due to the diverse types of objects and complex real-world scenarios, necessitating the selection of an appropriate gripper for each object type. Existing gripper selection methods focus on generalized gripper selection systems able to grasp a large variety of objects in non-cluttered scenarios for handling in industrial applications. Within this paper, a knowledge-based gripper selection method for e-grocery items in cluttered scenarios is implemented as a binary decision tree. The results are validated through empirical tests, demonstrating an overall accuracy of 90.7 %. As the percentage of true negatives is 81.6 %, it is necessary to combine grasping principles to reduce the percentage of True Negatives in the future.</b:Comments> </b:Source> </b:Sources>Download
ISI
PT Journal AU Ardissone, E Ulrich, S Kirchheim, A TI Design and Evaluation of an Automatic Decision System for Gripper Selection in Order Picking SO Logistics Journal : Proceedings PY 2023 VL 2023 IS 1 DI 10.2195/lj_proc_ardissone_en_202310_01 DE Automatisierung; Kommissionierung; E-Grocery; Greiferauswahl; automation; order picking; gripper selection AB Grasping objects poses a challenge in the automation of order picking due to the diverse types of objects and complex real-world scenarios, necessitating the selection of an appropriate gripper for each object type. Existing gripper selection methods focus on generalized gripper selection systems able to grasp a large variety of objects in non-cluttered scenarios for handling in industrial applications. Within this paper, a knowledge-based gripper selection method for e-grocery items in cluttered scenarios is implemented as a binary decision tree. The results are validated through empirical tests, demonstrating an overall accuracy of 90.7 %. As the percentage of true negatives is 81.6 %, it is necessary to combine grasping principles to reduce the percentage of True Negatives in the future. ERDownload
Mods
<mods> <titleInfo> <title>Design and Evaluation of an Automatic Decision System for Gripper Selection in Order Picking</title> </titleInfo> <name type="personal"> <namePart type="family">Ardissone</namePart> <namePart type="given">Eleonora</namePart> </name> <name type="personal"> <namePart type="family">Ulrich</namePart> <namePart type="given">Stephan</namePart> </name> <name type="personal"> <namePart type="family">Kirchheim</namePart> <namePart type="given">Alice</namePart> </name> <abstract>Grasping objects poses a challenge in the automation of order picking due to the diverse types of objects and complex real-world scenarios, necessitating the selection of an appropriate gripper for each object type. Existing gripper selection methods focus on generalized gripper selection systems able to grasp a large variety of objects in non-cluttered scenarios for handling in industrial applications. Within this paper, a knowledge-based gripper selection method for e-grocery items in cluttered scenarios is implemented as a binary decision tree. The results are validated through empirical tests, demonstrating an overall accuracy of 90.7 %. As the percentage of true negatives is 81.6 %, it is necessary to combine grasping principles to reduce the percentage of True Negatives in the future.</abstract> <subject> <topic>Automatisierung</topic> <topic>Kommissionierung</topic> <topic>E-Grocery</topic> <topic>Greiferauswahl</topic> <topic>automation</topic> <topic>order picking</topic> <topic>e-grocery</topic> <topic>gripper selection</topic> </subject> <classification authority="ddc">620</classification> <relatedItem type="host"> <genre authority="marcgt">periodical</genre> <genre>academic journal</genre> <titleInfo> <title>Logistics Journal : Proceedings</title> </titleInfo> <part> <detail type="volume"> <number>2023</number> </detail> <detail type="issue"> <number>1</number> </detail> <date>2023</date> </part> </relatedItem> <identifier type="issn">2192-9084</identifier> <identifier type="urn">urn:nbn:de:0009-14-58233</identifier> <identifier type="doi">10.2195/lj_proc_ardissone_en_202310_01</identifier> <identifier type="uri">http://nbn-resolving.de/urn:nbn:de:0009-14-58233</identifier> <identifier type="citekey">ardissone2023</identifier> </mods>Download
Full Metadata
Bibliographic Citation | Logistics Journal : referierte Veröffentlichungen, Vol. 2023, Iss. 1 |
---|---|
Title |
Design and Evaluation of an Automatic Decision System for Gripper Selection in Order Picking (eng) Design und Evaluation eines automatischen Entscheidungssystems für die Greiferauswahl bei der Kommissionierung (ger) |
Author | Eleonora Ardissone, Stephan Ulrich, Alice Kirchheim |
Language | eng |
Abstract | Grasping objects poses a challenge in the automation of order picking due to the diverse types of objects and complex real-world scenarios, necessitating the selection of an appropriate gripper for each object type. Existing gripper selection methods focus on generalized gripper selection systems able to grasp a large variety of objects in non-cluttered scenarios for handling in industrial applications. Within this paper, a knowledge-based gripper selection method for e-grocery items in cluttered scenarios is implemented as a binary decision tree. The results are validated through empirical tests, demonstrating an overall accuracy of 90.7 %. As the percentage of true negatives is 81.6 %, it is necessary to combine grasping principles to reduce the percentage of True Negatives in the future. Das Greifen von Objekten stellt aufgrund der vielfältigen Objektarten und komplexen realen Szenarien eine Herausforderung in der Automatisierung des Kommissionierens dar und erfordert die Wahl eines passenden Greifers für die jeweilige Objektart. Vorhandene Methoden zur Greiferauswahl konzentrieren sich auf Greifsysteme, die in der Lage sind, eine breite Vielfalt von Objekten in geordneten industriellen Anwendungen zu greifen. Innerhalb dieser Arbeit wird daher eine wissensbasierte Me-thode zur Greiferauswahl für E-Grocery Artikel in unordentlichen Szenarien als binärer Entscheidungsbaum implementiert. Die Ergebnisse werden durch empirische Tests validiert und zeigen eine Gesamtgenauigkeit von 90,7 %. Da der Prozentsatz der echten Negative bei 81,6 % liegt, ist es erforder-lich, Greifprinzipien zu kombinieren, um zukünftig den Prozentsatz der echten Negativwerte zu reduzieren. |
Subject | Automatisierung, Kommissionierung, E-Grocery, Greiferauswahl, automation, order picking, e-grocery, gripper selection |
DDC | 620 |
Rights | cc-by |
URN: | urn:nbn:de:0009-14-58233 |
DOI | https://doi.org/10.2195/lj_proc_ardissone_en_202310_01 |