Citation and metadata
Recommended citation
Knitt M, Elgouhary Y, Schyga J, Rose H, Braun P, Kreutzfeldt J (2023). Benchmarking for the Indoor Localization of Autonomous Mobile Robots in Intralogistics. Logistics Journal : Proceedings, Vol. 2023. (urn:nbn:de:0009-14-58098)
Download Citation
Endnote
%0 Journal Article %T Benchmarking for the Indoor Localization of Autonomous Mobile Robots in Intralogistics %A Knitt, Markus %A Elgouhary, Yousef %A Schyga, Jakob %A Rose, Hendrik %A Braun, Philipp %A Kreutzfeldt, Jochen %J Logistics Journal : Proceedings %D 2023 %V 2023 %N 1 %@ 2192-9084 %F knitt2023 %X This paper introduces a novel approach to benchmarking Indoor Localization Systems (ILS) for mobile robots in warehouse and manufacturing contexts. The study focuses on diverse localization technologies commonly used in mobile robotics and implements transparent and comparable performance metrics, an automated experimental procedure, as well as an intuitive performance visualization approach. Experiments were conducted using a custom-built robot equipped with various sensors, including LiDAR, Ultra-Wideband (UWB), and vision systems. A process for systematically analyzing the impact of environmental factors such as lighting, reflectivity, and obstacles on localization performance is proposed. The results provide insights into system robustness and accuracy under different conditions. The study enables more efficient experimental analysis of sensor fusion and optimization strategies for achieving optimal performance and offers a workflow to efficiently investigate sensor fusion concepts using real data. %L 620 %K Benchmarking %K Lokalisierung %K Robotik %K Intralogistik %K Localization %K Robotics %K Intralogistics %R 10.2195/lj_proc_knitt_de_202310_01 %U http://nbn-resolving.de/urn:nbn:de:0009-14-58098 %U http://dx.doi.org/10.2195/lj_proc_knitt_de_202310_01Download
Bibtex
@Article{knitt2023, author = "Knitt, Markus and Elgouhary, Yousef and Schyga, Jakob and Rose, Hendrik and Braun, Philipp and Kreutzfeldt, Jochen", title = "Benchmarking for the Indoor Localization of Autonomous Mobile Robots in Intralogistics", journal = "Logistics Journal : Proceedings", year = "2023", volume = "2023", number = "1", keywords = "Benchmarking; Lokalisierung; Robotik; Intralogistik; Localization; Robotics; Intralogistics", abstract = "This paper introduces a novel approach to benchmarking Indoor Localization Systems (ILS) for mobile robots in warehouse and manufacturing contexts. The study focuses on diverse localization technologies commonly used in mobile robotics and implements transparent and comparable performance metrics, an automated experimental procedure, as well as an intuitive performance visualization approach. Experiments were conducted using a custom-built robot equipped with various sensors, including LiDAR, Ultra-Wideband (UWB), and vision systems. A process for systematically analyzing the impact of environmental factors such as lighting, reflectivity, and obstacles on localization performance is proposed. The results provide insights into system robustness and accuracy under different conditions. The study enables more efficient experimental analysis of sensor fusion and optimization strategies for achieving optimal performance and offers a workflow to efficiently investigate sensor fusion concepts using real data.", issn = "2192-9084", doi = "10.2195/lj_proc_knitt_de_202310_01", url = "http://nbn-resolving.de/urn:nbn:de:0009-14-58098" }Download
RIS
TY - JOUR AU - Knitt, Markus AU - Elgouhary, Yousef AU - Schyga, Jakob AU - Rose, Hendrik AU - Braun, Philipp AU - Kreutzfeldt, Jochen PY - 2023 DA - 2023// TI - Benchmarking for the Indoor Localization of Autonomous Mobile Robots in Intralogistics JO - Logistics Journal : Proceedings VL - 2023 IS - 1 KW - Benchmarking KW - Lokalisierung KW - Robotik KW - Intralogistik KW - Localization KW - Robotics KW - Intralogistics AB - This paper introduces a novel approach to benchmarking Indoor Localization Systems (ILS) for mobile robots in warehouse and manufacturing contexts. The study focuses on diverse localization technologies commonly used in mobile robotics and implements transparent and comparable performance metrics, an automated experimental procedure, as well as an intuitive performance visualization approach. Experiments were conducted using a custom-built robot equipped with various sensors, including LiDAR, Ultra-Wideband (UWB), and vision systems. A process for systematically analyzing the impact of environmental factors such as lighting, reflectivity, and obstacles on localization performance is proposed. The results provide insights into system robustness and accuracy under different conditions. The study enables more efficient experimental analysis of sensor fusion and optimization strategies for achieving optimal performance and offers a workflow to efficiently investigate sensor fusion concepts using real data. SN - 2192-9084 UR - http://nbn-resolving.de/urn:nbn:de:0009-14-58098 DO - 10.2195/lj_proc_knitt_de_202310_01 ID - knitt2023 ER -Download
Wordbib
<?xml version="1.0" encoding="UTF-8"?> <b:Sources SelectedStyle="" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" > <b:Source> <b:Tag>knitt2023</b:Tag> <b:SourceType>ArticleInAPeriodical</b:SourceType> <b:Year>2023</b:Year> <b:PeriodicalTitle>Logistics Journal : Proceedings</b:PeriodicalTitle> <b:Volume>2023</b:Volume> <b:Issue>1</b:Issue> <b:Url>http://nbn-resolving.de/urn:nbn:de:0009-14-58098</b:Url> <b:Url>http://dx.doi.org/10.2195/lj_proc_knitt_de_202310_01</b:Url> <b:Author> <b:Author><b:NameList> <b:Person><b:Last>Knitt</b:Last><b:First>Markus</b:First></b:Person> <b:Person><b:Last>Elgouhary</b:Last><b:First>Yousef</b:First></b:Person> <b:Person><b:Last>Schyga</b:Last><b:First>Jakob</b:First></b:Person> <b:Person><b:Last>Rose</b:Last><b:First>Hendrik</b:First></b:Person> <b:Person><b:Last>Braun</b:Last><b:First>Philipp</b:First></b:Person> <b:Person><b:Last>Kreutzfeldt</b:Last><b:First>Jochen</b:First></b:Person> </b:NameList></b:Author> </b:Author> <b:Title>Benchmarking for the Indoor Localization of Autonomous Mobile Robots in Intralogistics</b:Title> <b:Comments>This paper introduces a novel approach to benchmarking Indoor Localization Systems (ILS) for mobile robots in warehouse and manufacturing contexts. The study focuses on diverse localization technologies commonly used in mobile robotics and implements transparent and comparable performance metrics, an automated experimental procedure, as well as an intuitive performance visualization approach. Experiments were conducted using a custom-built robot equipped with various sensors, including LiDAR, Ultra-Wideband (UWB), and vision systems. A process for systematically analyzing the impact of environmental factors such as lighting, reflectivity, and obstacles on localization performance is proposed. The results provide insights into system robustness and accuracy under different conditions. The study enables more efficient experimental analysis of sensor fusion and optimization strategies for achieving optimal performance and offers a workflow to efficiently investigate sensor fusion concepts using real data.</b:Comments> </b:Source> </b:Sources>Download
ISI
PT Journal AU Knitt, M Elgouhary, Y Schyga, J Rose, H Braun, P Kreutzfeldt, J TI Benchmarking for the Indoor Localization of Autonomous Mobile Robots in Intralogistics SO Logistics Journal : Proceedings PY 2023 VL 2023 IS 1 DI 10.2195/lj_proc_knitt_de_202310_01 DE Benchmarking; Lokalisierung; Robotik; Intralogistik; Localization; Robotics; Intralogistics AB This paper introduces a novel approach to benchmarking Indoor Localization Systems (ILS) for mobile robots in warehouse and manufacturing contexts. The study focuses on diverse localization technologies commonly used in mobile robotics and implements transparent and comparable performance metrics, an automated experimental procedure, as well as an intuitive performance visualization approach. Experiments were conducted using a custom-built robot equipped with various sensors, including LiDAR, Ultra-Wideband (UWB), and vision systems. A process for systematically analyzing the impact of environmental factors such as lighting, reflectivity, and obstacles on localization performance is proposed. The results provide insights into system robustness and accuracy under different conditions. The study enables more efficient experimental analysis of sensor fusion and optimization strategies for achieving optimal performance and offers a workflow to efficiently investigate sensor fusion concepts using real data. ERDownload
Mods
<mods> <titleInfo> <title>Benchmarking for the Indoor Localization of Autonomous Mobile Robots in Intralogistics</title> </titleInfo> <name type="personal"> <namePart type="family">Knitt</namePart> <namePart type="given">Markus</namePart> </name> <name type="personal"> <namePart type="family">Elgouhary</namePart> <namePart type="given">Yousef</namePart> </name> <name type="personal"> <namePart type="family">Schyga</namePart> <namePart type="given">Jakob</namePart> </name> <name type="personal"> <namePart type="family">Rose</namePart> <namePart type="given">Hendrik</namePart> </name> <name type="personal"> <namePart type="family">Braun</namePart> <namePart type="given">Philipp</namePart> </name> <name type="personal"> <namePart type="family">Kreutzfeldt</namePart> <namePart type="given">Jochen</namePart> </name> <abstract>This paper introduces a novel approach to benchmarking Indoor Localization Systems (ILS) for mobile robots in warehouse and manufacturing contexts. The study focuses on diverse localization technologies commonly used in mobile robotics and implements transparent and comparable performance metrics, an automated experimental procedure, as well as an intuitive performance visualization approach. Experiments were conducted using a custom-built robot equipped with various sensors, including LiDAR, Ultra-Wideband (UWB), and vision systems. A process for systematically analyzing the impact of environmental factors such as lighting, reflectivity, and obstacles on localization performance is proposed. The results provide insights into system robustness and accuracy under different conditions. The study enables more efficient experimental analysis of sensor fusion and optimization strategies for achieving optimal performance and offers a workflow to efficiently investigate sensor fusion concepts using real data.</abstract> <subject> <topic>Benchmarking</topic> <topic>Lokalisierung</topic> <topic>Robotik</topic> <topic>Intralogistik</topic> <topic>Benchmarking</topic> <topic>Localization</topic> <topic>Robotics</topic> <topic>Intralogistics</topic> </subject> <classification authority="ddc">620</classification> <relatedItem type="host"> <genre authority="marcgt">periodical</genre> <genre>academic journal</genre> <titleInfo> <title>Logistics Journal : Proceedings</title> </titleInfo> <part> <detail type="volume"> <number>2023</number> </detail> <detail type="issue"> <number>1</number> </detail> <date>2023</date> </part> </relatedItem> <identifier type="issn">2192-9084</identifier> <identifier type="urn">urn:nbn:de:0009-14-58098</identifier> <identifier type="doi">10.2195/lj_proc_knitt_de_202310_01</identifier> <identifier type="uri">http://nbn-resolving.de/urn:nbn:de:0009-14-58098</identifier> <identifier type="citekey">knitt2023</identifier> </mods>Download
Full Metadata
Bibliographic Citation | Logistics Journal : referierte Veröffentlichungen, Vol. 2023, Iss. 1 |
---|---|
Title |
Benchmarking for the Indoor Localization of Autonomous Mobile Robots in Intralogistics (eng) Benchmarking für die Indoor-Lokalisierung Autonomer Mobiler Roboter in der Intralogistik (ger) |
Author | Markus Knitt, Yousef Elgouhary, Jakob Schyga, Hendrik Rose, Philipp Braun, Jochen Kreutzfeldt |
Language | eng |
Abstract | This paper introduces a novel approach to benchmarking Indoor Localization Systems (ILS) for mobile robots in warehouse and manufacturing contexts. The study focuses on diverse localization technologies commonly used in mobile robotics and implements transparent and comparable performance metrics, an automated experimental procedure, as well as an intuitive performance visualization approach. Experiments were conducted using a custom-built robot equipped with various sensors, including LiDAR, Ultra-Wideband (UWB), and vision systems. A process for systematically analyzing the impact of environmental factors such as lighting, reflectivity, and obstacles on localization performance is proposed. The results provide insights into system robustness and accuracy under different conditions. The study enables more efficient experimental analysis of sensor fusion and optimization strategies for achieving optimal performance and offers a workflow to efficiently investigate sensor fusion concepts using real data. In diesem Beitrag wird ein neuartiger Ansatz zum Benchmarking von Indoor-Lokalisierungssystemen (ILS) für mobile Roboter in Lager- und Produktion-sumgebungen vorgestellt. Die Studie konzentriert sich auf verschiedene Lokalisierungstechnologien, die üblicherweise in der mobilen Robotik verwendet werden, und implementiert transparente und vergleichbare Leistungsmetriken, ein automatisiertes Experimentierverfahren und einen intuitiven Ansatz zur Leistungsvisualisierung. Die Experimente wurden mit einem speziell angefertigten Roboter durchgeführt, der mit verschiedenen Sensoren ausgestattet war, darunter LiDAR-, UWB- und Vision-Systeme. Es wird eine Methode vorgeschlagen, um die Auswirkungen von Umgebungsfaktoren wie Beleuchtung, Reflektivität und Hindernisse auf die Lokalisierungsleistung systematisch zu analysieren. Die Ergebnisse geben Aufschluss über die Robustheit und Genauigkeit des Systems unter verschiedenen Bedingungen. Die Studie ermöglicht eine effizientere experimentelle Analyse von Sensorfusions- und Optimierungsstrategien, um eine optimale Leistung zu erzielen, und bietet einen Arbeitsablauf für die effiziente Untersuchung von Sensorfusionskonzepten anhand realer Daten. |
Subject | Benchmarking, Lokalisierung, Robotik, Intralogistik, Benchmarking, Localization, Robotics, Intralogistics |
DDC | 620 |
Rights | cc-by |
URN: | urn:nbn:de:0009-14-58098 |
DOI | https://doi.org/10.2195/lj_proc_knitt_de_202310_01 |