Citation and metadata
Recommended citation
Rutinowski J, Youssef H, Gouda A, Reining C, Roidl M (2022). The Potential of Deep Learning based Computer Vision in Warehousing Logistics. Logistics Journal : Proceedings, Vol. 2022. (urn:nbn:de:0009-14-56018)
Download Citation
Endnote
%0 Journal Article %T The Potential of Deep Learning based Computer Vision in Warehousing Logistics %A Rutinowski, Jérôme %A Youssef, Hazem %A Gouda, Anas %A Reining, Christopher %A Roidl, Moritz %J Logistics Journal : Proceedings %D 2022 %V 2022 %N 18 %@ 2192-9084 %F rutinowski2022 %X This work describes three deep learning based computer vision approaches, that hold the potential to increase the degree of automation and the productivity of common warehousing procedures. These approaches will focus on: the re-identification of logistical entities, especially when entering and leaving the warehouse; the multi-view pose estimation of logistical entities to track and to localize them on the shop floor; and the category-agnostic segmentation of items in a bin for robotic grasping. %L 620 %K Computer Vision %K Deep Learning %K Object Segmentation %K Objekt Segmentierung %K Pose Estimation %K Re-Identification %K Re-Identifikation %R 10.2195/lj_proc_rutinowski_en_202211_01 %U http://nbn-resolving.de/urn:nbn:de:0009-14-56018 %U http://dx.doi.org/10.2195/lj_proc_rutinowski_en_202211_01Download
Bibtex
@Article{rutinowski2022, author = "Rutinowski, J{\'e}r{\^o}me and Youssef, Hazem and Gouda, Anas and Reining, Christopher and Roidl, Moritz", title = "The Potential of Deep Learning based Computer Vision in Warehousing Logistics", journal = "Logistics Journal : Proceedings", year = "2022", volume = "2022", number = "18", keywords = "Computer Vision; Deep Learning; Object Segmentation; Objekt Segmentierung; Pose Estimation; Re-Identification; Re-Identifikation", abstract = "This work describes three deep learning based computer vision approaches, that hold the potential to increase the degree of automation and the productivity of common warehousing procedures. These approaches will focus on: the re-identification of logistical entities, especially when entering and leaving the warehouse; the multi-view pose estimation of logistical entities to track and to localize them on the shop floor; and the category-agnostic segmentation of items in a bin for robotic grasping.", issn = "2192-9084", doi = "10.2195/lj_proc_rutinowski_en_202211_01", url = "http://nbn-resolving.de/urn:nbn:de:0009-14-56018" }Download
RIS
TY - JOUR AU - Rutinowski, Jérôme AU - Youssef, Hazem AU - Gouda, Anas AU - Reining, Christopher AU - Roidl, Moritz PY - 2022 DA - 2022// TI - The Potential of Deep Learning based Computer Vision in Warehousing Logistics JO - Logistics Journal : Proceedings VL - 2022 IS - 18 KW - Computer Vision KW - Deep Learning KW - Object Segmentation KW - Objekt Segmentierung KW - Pose Estimation KW - Re-Identification KW - Re-Identifikation AB - This work describes three deep learning based computer vision approaches, that hold the potential to increase the degree of automation and the productivity of common warehousing procedures. These approaches will focus on: the re-identification of logistical entities, especially when entering and leaving the warehouse; the multi-view pose estimation of logistical entities to track and to localize them on the shop floor; and the category-agnostic segmentation of items in a bin for robotic grasping. SN - 2192-9084 UR - http://nbn-resolving.de/urn:nbn:de:0009-14-56018 DO - 10.2195/lj_proc_rutinowski_en_202211_01 ID - rutinowski2022 ER -Download
Wordbib
<?xml version="1.0" encoding="UTF-8"?> <b:Sources SelectedStyle="" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" > <b:Source> <b:Tag>rutinowski2022</b:Tag> <b:SourceType>ArticleInAPeriodical</b:SourceType> <b:Year>2022</b:Year> <b:PeriodicalTitle>Logistics Journal : Proceedings</b:PeriodicalTitle> <b:Volume>2022</b:Volume> <b:Issue>18</b:Issue> <b:Url>http://nbn-resolving.de/urn:nbn:de:0009-14-56018</b:Url> <b:Url>http://dx.doi.org/10.2195/lj_proc_rutinowski_en_202211_01</b:Url> <b:Author> <b:Author><b:NameList> <b:Person><b:Last>Rutinowski</b:Last><b:First>Jérôme</b:First></b:Person> <b:Person><b:Last>Youssef</b:Last><b:First>Hazem</b:First></b:Person> <b:Person><b:Last>Gouda</b:Last><b:First>Anas</b:First></b:Person> <b:Person><b:Last>Reining</b:Last><b:First>Christopher</b:First></b:Person> <b:Person><b:Last>Roidl</b:Last><b:First>Moritz</b:First></b:Person> </b:NameList></b:Author> </b:Author> <b:Title>The Potential of Deep Learning based Computer Vision in Warehousing Logistics</b:Title> <b:Comments>This work describes three deep learning based computer vision approaches, that hold the potential to increase the degree of automation and the productivity of common warehousing procedures. These approaches will focus on: the re-identification of logistical entities, especially when entering and leaving the warehouse; the multi-view pose estimation of logistical entities to track and to localize them on the shop floor; and the category-agnostic segmentation of items in a bin for robotic grasping.</b:Comments> </b:Source> </b:Sources>Download
ISI
PT Journal AU Rutinowski, J Youssef, H Gouda, A Reining, C Roidl, M TI The Potential of Deep Learning based Computer Vision in Warehousing Logistics SO Logistics Journal : Proceedings PY 2022 VL 2022 IS 18 DI 10.2195/lj_proc_rutinowski_en_202211_01 DE Computer Vision; Deep Learning; Object Segmentation; Objekt Segmentierung; Pose Estimation; Re-Identification; Re-Identifikation AB This work describes three deep learning based computer vision approaches, that hold the potential to increase the degree of automation and the productivity of common warehousing procedures. These approaches will focus on: the re-identification of logistical entities, especially when entering and leaving the warehouse; the multi-view pose estimation of logistical entities to track and to localize them on the shop floor; and the category-agnostic segmentation of items in a bin for robotic grasping. ERDownload
Mods
<mods> <titleInfo> <title>The Potential of Deep Learning based Computer Vision in Warehousing Logistics</title> </titleInfo> <name type="personal"> <namePart type="family">Rutinowski</namePart> <namePart type="given">Jérôme</namePart> </name> <name type="personal"> <namePart type="family">Youssef</namePart> <namePart type="given">Hazem</namePart> </name> <name type="personal"> <namePart type="family">Gouda</namePart> <namePart type="given">Anas</namePart> </name> <name type="personal"> <namePart type="family">Reining</namePart> <namePart type="given">Christopher</namePart> </name> <name type="personal"> <namePart type="family">Roidl</namePart> <namePart type="given">Moritz</namePart> </name> <abstract>This work describes three deep learning based computer vision approaches, that hold the potential to increase the degree of automation and the productivity of common warehousing procedures. These approaches will focus on: the re-identification of logistical entities, especially when entering and leaving the warehouse; the multi-view pose estimation of logistical entities to track and to localize them on the shop floor; and the category-agnostic segmentation of items in a bin for robotic grasping.</abstract> <subject> <topic>Computer Vision</topic> <topic>Deep Learning</topic> <topic>Object Segmentation</topic> <topic>Objekt Segmentierung</topic> <topic>Pose Estimation</topic> <topic>Re-Identification</topic> <topic>Re-Identifikation</topic> </subject> <classification authority="ddc">620</classification> <relatedItem type="host"> <genre authority="marcgt">periodical</genre> <genre>academic journal</genre> <titleInfo> <title>Logistics Journal : Proceedings</title> </titleInfo> <part> <detail type="volume"> <number>2022</number> </detail> <detail type="issue"> <number>18</number> </detail> <date>2022</date> </part> </relatedItem> <identifier type="issn">2192-9084</identifier> <identifier type="urn">urn:nbn:de:0009-14-56018</identifier> <identifier type="doi">10.2195/lj_proc_rutinowski_en_202211_01</identifier> <identifier type="uri">http://nbn-resolving.de/urn:nbn:de:0009-14-56018</identifier> <identifier type="citekey">rutinowski2022</identifier> </mods>Download
Full Metadata
Bibliographic Citation | Logistics Journal : referierte Veröffentlichungen, Vol. 2022, Iss. 18 |
---|---|
Title |
The Potential of Deep Learning based Computer Vision in Warehousing Logistics (eng) |
Author | Jérôme Rutinowski, Hazem Youssef, Anas Gouda, Christopher Reining, Moritz Roidl |
Language | eng |
Abstract | This work describes three deep learning based computer vision approaches, that hold the potential to increase the degree of automation and the productivity of common warehousing procedures. These approaches will focus on: the re-identification of logistical entities, especially when entering and leaving the warehouse; the multi-view pose estimation of logistical entities to track and to localize them on the shop floor; and the category-agnostic segmentation of items in a bin for robotic grasping. Diese Arbeit beschreibt drei Deep-Learning-basierte Computer-Vision-Ansätze, die das Potenzial haben, den Automatisierungsgrad und die Produktivität gängiger Lagerverfahren zu erhöhen. Diese Ansätze konzentrieren sich auf: die Re-Identifizierung von logistischen Einheiten, insbesondere beim Betreten und Verlassen des Lagers; die Multiview-Positionsschätzung von logistischen Einheiten, um sie in der Fabrik zu verfolgen und zu lokalisieren; und die kategorienunabhängige Segmentierung von Artikeln in einem Behälter für das Greifen durch einen Roboter. |
Subject | Computer Vision, Deep Learning, Object Segmentation, Objekt Segmentierung, Pose Estimation, Re-Identification, Re-Identifikation |
DDC | 620 |
Rights | fDPPL |
URN: | urn:nbn:de:0009-14-56018 |
DOI | https://doi.org/10.2195/lj_proc_rutinowski_en_202211_01 |