Citation and metadata
Recommended citation
Azizpour M, Namazypour N, Kirchheim A (2022). Synthetic Data Generation for Robotic Order Picking. Logistics Journal : Proceedings, Vol. 2022. (urn:nbn:de:0009-14-55795)
Download Citation
Endnote
%0 Journal Article %T Synthetic Data Generation for Robotic Order Picking %A Azizpour, Moein %A Namazypour, Nafiseh %A Kirchheim, Alice %J Logistics Journal : Proceedings %D 2022 %V 2022 %N 18 %@ 2192-9084 %F azizpour2022 %X Advances in robotics, especially in computer vision, have led to the increasing use of robots in order picking. Deep Learning methods using CNN for computer vision purposes have shown good object detection and localization results. However, training neural networks requires a large amount of domain-specific labelled data. In this work, we generated synthetic data and converted it to the appropriate format to be fed to neural network. For this purpose, randomized camera angles, backgrounds, and object configuration are used for data augmentation. A generalized and balanced dataset is ensured by varying these parameters based on the properties of natural objects. %L 620 %K Logistics %K computer vision %K order picking %K pick and place %K synthetic data generation %R 10.2195/lj_proc_azizpour_en_202211_01 %U http://nbn-resolving.de/urn:nbn:de:0009-14-55795 %U http://dx.doi.org/10.2195/lj_proc_azizpour_en_202211_01Download
Bibtex
@Article{azizpour2022, author = "Azizpour, Moein and Namazypour, Nafiseh and Kirchheim, Alice", title = "Synthetic Data Generation for Robotic Order Picking", journal = "Logistics Journal : Proceedings", year = "2022", volume = "2022", number = "18", keywords = "Logistics; computer vision; order picking; pick and place; synthetic data generation", abstract = "Advances in robotics, especially in computer vision, have led to the increasing use of robots in order picking. Deep Learning methods using CNN for computer vision purposes have shown good object detection and localization results. However, training neural networks requires a large amount of domain-specific labelled data. In this work, we generated synthetic data and converted it to the appropriate format to be fed to neural network. For this purpose, randomized camera angles, backgrounds, and object configuration are used for data augmentation. A generalized and balanced dataset is ensured by varying these parameters based on the properties of natural objects.", issn = "2192-9084", doi = "10.2195/lj_proc_azizpour_en_202211_01", url = "http://nbn-resolving.de/urn:nbn:de:0009-14-55795" }Download
RIS
TY - JOUR AU - Azizpour, Moein AU - Namazypour, Nafiseh AU - Kirchheim, Alice PY - 2022 DA - 2022// TI - Synthetic Data Generation for Robotic Order Picking JO - Logistics Journal : Proceedings VL - 2022 IS - 18 KW - Logistics KW - computer vision KW - order picking KW - pick and place KW - synthetic data generation AB - Advances in robotics, especially in computer vision, have led to the increasing use of robots in order picking. Deep Learning methods using CNN for computer vision purposes have shown good object detection and localization results. However, training neural networks requires a large amount of domain-specific labelled data. In this work, we generated synthetic data and converted it to the appropriate format to be fed to neural network. For this purpose, randomized camera angles, backgrounds, and object configuration are used for data augmentation. A generalized and balanced dataset is ensured by varying these parameters based on the properties of natural objects. SN - 2192-9084 UR - http://nbn-resolving.de/urn:nbn:de:0009-14-55795 DO - 10.2195/lj_proc_azizpour_en_202211_01 ID - azizpour2022 ER -Download
Wordbib
<?xml version="1.0" encoding="UTF-8"?> <b:Sources SelectedStyle="" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" > <b:Source> <b:Tag>azizpour2022</b:Tag> <b:SourceType>ArticleInAPeriodical</b:SourceType> <b:Year>2022</b:Year> <b:PeriodicalTitle>Logistics Journal : Proceedings</b:PeriodicalTitle> <b:Volume>2022</b:Volume> <b:Issue>18</b:Issue> <b:Url>http://nbn-resolving.de/urn:nbn:de:0009-14-55795</b:Url> <b:Url>http://dx.doi.org/10.2195/lj_proc_azizpour_en_202211_01</b:Url> <b:Author> <b:Author><b:NameList> <b:Person><b:Last>Azizpour</b:Last><b:First>Moein</b:First></b:Person> <b:Person><b:Last>Namazypour</b:Last><b:First>Nafiseh</b:First></b:Person> <b:Person><b:Last>Kirchheim</b:Last><b:First>Alice</b:First></b:Person> </b:NameList></b:Author> </b:Author> <b:Title>Synthetic Data Generation for Robotic Order Picking</b:Title> <b:Comments>Advances in robotics, especially in computer vision, have led to the increasing use of robots in order picking. Deep Learning methods using CNN for computer vision purposes have shown good object detection and localization results. However, training neural networks requires a large amount of domain-specific labelled data. In this work, we generated synthetic data and converted it to the appropriate format to be fed to neural network. For this purpose, randomized camera angles, backgrounds, and object configuration are used for data augmentation. A generalized and balanced dataset is ensured by varying these parameters based on the properties of natural objects.</b:Comments> </b:Source> </b:Sources>Download
ISI
PT Journal AU Azizpour, M Namazypour, N Kirchheim, A TI Synthetic Data Generation for Robotic Order Picking SO Logistics Journal : Proceedings PY 2022 VL 2022 IS 18 DI 10.2195/lj_proc_azizpour_en_202211_01 DE Logistics; computer vision; order picking; pick and place; synthetic data generation AB Advances in robotics, especially in computer vision, have led to the increasing use of robots in order picking. Deep Learning methods using CNN for computer vision purposes have shown good object detection and localization results. However, training neural networks requires a large amount of domain-specific labelled data. In this work, we generated synthetic data and converted it to the appropriate format to be fed to neural network. For this purpose, randomized camera angles, backgrounds, and object configuration are used for data augmentation. A generalized and balanced dataset is ensured by varying these parameters based on the properties of natural objects. ERDownload
Mods
<mods> <titleInfo> <title>Synthetic Data Generation for Robotic Order Picking</title> </titleInfo> <name type="personal"> <namePart type="family">Azizpour</namePart> <namePart type="given">Moein</namePart> </name> <name type="personal"> <namePart type="family">Namazypour</namePart> <namePart type="given">Nafiseh</namePart> </name> <name type="personal"> <namePart type="family">Kirchheim</namePart> <namePart type="given">Alice</namePart> </name> <abstract>Advances in robotics, especially in computer vision, have led to the increasing use of robots in order picking. Deep Learning methods using CNN for computer vision purposes have shown good object detection and localization results. However, training neural networks requires a large amount of domain-specific labelled data. In this work, we generated synthetic data and converted it to the appropriate format to be fed to neural network. For this purpose, randomized camera angles, backgrounds, and object configuration are used for data augmentation. A generalized and balanced dataset is ensured by varying these parameters based on the properties of natural objects.</abstract> <subject> <topic>Logistics</topic> <topic>computer vision</topic> <topic>order picking</topic> <topic>pick and place</topic> <topic>synthetic data generation</topic> </subject> <classification authority="ddc">620</classification> <relatedItem type="host"> <genre authority="marcgt">periodical</genre> <genre>academic journal</genre> <titleInfo> <title>Logistics Journal : Proceedings</title> </titleInfo> <part> <detail type="volume"> <number>2022</number> </detail> <detail type="issue"> <number>18</number> </detail> <date>2022</date> </part> </relatedItem> <identifier type="issn">2192-9084</identifier> <identifier type="urn">urn:nbn:de:0009-14-55795</identifier> <identifier type="doi">10.2195/lj_proc_azizpour_en_202211_01</identifier> <identifier type="uri">http://nbn-resolving.de/urn:nbn:de:0009-14-55795</identifier> <identifier type="citekey">azizpour2022</identifier> </mods>Download
Full Metadata
Bibliographic Citation | Logistics Journal : referierte Veröffentlichungen, Vol. 2022, Iss. 18 |
---|---|
Title |
Synthetic Data Generation for Robotic Order Picking (eng) |
Author | Moein Azizpour, Nafiseh Namazypour, Alice Kirchheim |
Language | eng |
Abstract | Advances in robotics, especially in computer vision, have led to the increasing use of robots in order picking. Deep Learning methods using CNN for computer vision purposes have shown good object detection and localization results. However, training neural networks requires a large amount of domain-specific labelled data. In this work, we generated synthetic data and converted it to the appropriate format to be fed to neural network. For this purpose, randomized camera angles, backgrounds, and object configuration are used for data augmentation. A generalized and balanced dataset is ensured by varying these parameters based on the properties of natural objects. Fortschritte in der Robotik, insbesondere in der Computer Vision, haben zu einem zunehmenden Einsatz von Robotern in der Kommissionierung geführt. Deep-Learning-Methoden, die CNN für Computer-Vision-Zwecke verwenden, haben gute Ergebnisse bei der Objekterkennung und -lokalisierung gezeigt. Das Trainieren neuronaler Netze erfordert jedoch eine große Menge an objektspezifisch markierten Daten. In diesem Beitrag haben wir synthetische Daten generiert und in ein geeignetes Format konvertiert, um damit neuronale netzte zu trainieren. Zu diesem Zweck werden randomisierte Kamerawinkel, Hintergründe und Objektkonfigurationen zur Datenerweiterung verwendet. Durch die Variation dieser Parameter auf der Grundlage der Eigenschaften natürlicher Objekte wird ein allgemeiner und ausgewogener Datensatz gewährleistet. |
Subject | Logistics, computer vision, order picking, pick and place, synthetic data generation |
DDC | 620 |
Rights | fDPPL |
URN: | urn:nbn:de:0009-14-55795 |
DOI | https://doi.org/10.2195/lj_proc_azizpour_en_202211_01 |