You are here: Home Proceedings
Document Actions

Proceedings

Synthetic Data Generation for Robotic Order Picking

Synthetische Datengenerierung für die Kommissionierung mit Robotern

  1. M.Sc. Moein Azizpour Department of Technology of Logistics Systems, Helmut Schmidt University
  2. B.Sc. Nafiseh Namazypour Department of Technology of Logistics Systems, Helmut Schmidt University
  3. Prof. Dr.-Ing. Alice Kirchheim Department of Technology of Logistics Systems, Helmut Schmidt University

Abstracts

Advances in robotics, especially in computer vision, have led to the increasing use of robots in order picking. Deep Learning methods using CNN for computer vision purposes have shown good object detection and localization results. However, training neural networks requires a large amount of domain-specific labelled data. In this work, we generated synthetic data and converted it to the appropriate format to be fed to neural network. For this purpose, randomized camera angles, backgrounds, and object configuration are used for data augmentation. A generalized and balanced dataset is ensured by varying these parameters based on the properties of natural objects.

Fortschritte in der Robotik, insbesondere in der Computer Vision, haben zu einem zunehmenden Einsatz von Robotern in der Kommissionierung geführt. Deep-Learning-Methoden, die CNN für Computer-Vision-Zwecke verwenden, haben gute Ergebnisse bei der Objekterkennung und -lokalisierung gezeigt. Das Trainieren neuronaler Netze erfordert jedoch eine große Menge an objektspezifisch markierten Daten. In diesem Beitrag haben wir synthetische Daten generiert und in ein geeignetes Format konvertiert, um damit neuronale netzte zu trainieren. Zu diesem Zweck werden randomisierte Kamerawinkel, Hintergründe und Objektkonfigurationen zur Datenerweiterung verwendet. Durch die Variation dieser Parameter auf der Grundlage der Eigenschaften natürlicher Objekte wird ein allgemeiner und ausgewogener Datensatz gewährleistet.

Keywords

Fulltext

License

Any party may pass on this Work by electronic means and make it available for download under the terms and conditions of the free Digital Peer Publishing License. The text of the license may be accessed and retrieved at http://www.dipp.nrw.de/lizenzen/dppl/fdppl/f-DPPL_v1_de_11-2004.html.

Number of citations

Visit Google Scholar to find out, how often this paper is cited.