Citation and metadata
Recommended citation
Zhu H, Rank S, Schmidt T (2021). Automated, AI-based Inspection of Drive Wheels on Overhead Hoist Transport Vehicles. Logistics Journal : Proceedings, Vol. 2021. (urn:nbn:de:0009-14-54509)
Download Citation
Endnote
%0 Journal Article %T Automated, AI-based Inspection of Drive Wheels on Overhead Hoist Transport Vehicles %A Zhu, Hailong %A Rank, Sebastian %A Schmidt, Thorsten %J Logistics Journal : Proceedings %D 2021 %V 2021 %N 17 %@ 2192-9084 %F zhu2021 %X Overhead hoist transport systems are used to transport wafers in 300 mm semiconductor factories. These rail-based systems usually consist of hundreds of vehicles to ensure fast and safe transport of wafers between tools. Faults of individual vehicles can cause damage to the transferred goods and production downtimes. To minimize the risk of failure, extensive preventive maintenance of the vehicle's heavily stressed components is required. This includes the chassis and drive wheels. This article describes an automatic inspection approach that can drastically accelerate the inspection process. We have developed an automatic inspection approach for the drive wheels that can drastically speed up the inspection process. From the data obtained, we trained a deep convolutional autoencoder network to predict the growth of fractures on the surface of the wheels. With the help of our inspection approach, it is possible to carry out conditionbased predictive maintenance of the OHT vehicles. This approach promises cost savings compared to routine or time-based strategies for preventive maintenance, as we can carry out maintenance tasks only when they are justified. %L 620 %K Fehlererkennung %K OHT %K Verschleißmodell %K Zustandsüberwachung %K autoencoder %K condition monitoring %K faults detection %K wear out model %R 10.2195/lj_Proc_zhu_en_202112_01 %U http://nbn-resolving.de/urn:nbn:de:0009-14-54509 %U http://dx.doi.org/10.2195/lj_Proc_zhu_en_202112_01Download
Bibtex
@Article{zhu2021, author = "Zhu, Hailong and Rank, Sebastian and Schmidt, Thorsten", title = "Automated, AI-based Inspection of Drive Wheels on Overhead Hoist Transport Vehicles", journal = "Logistics Journal : Proceedings", year = "2021", volume = "2021", number = "17", keywords = "Fehlererkennung; OHT; Verschlei{\ss}modell; Zustands{\"u}berwachung; autoencoder; condition monitoring; faults detection; wear out model", abstract = "Overhead hoist transport systems are used to transport wafers in 300 mm semiconductor factories. These rail-based systems usually consist of hundreds of vehicles to ensure fast and safe transport of wafers between tools. Faults of individual vehicles can cause damage to the transferred goods and production downtimes. To minimize the risk of failure, extensive preventive maintenance of the vehicle's heavily stressed components is required. This includes the chassis and drive wheels. This article describes an automatic inspection approach that can drastically accelerate the inspection process. We have developed an automatic inspection approach for the drive wheels that can drastically speed up the inspection process. From the data obtained, we trained a deep convolutional autoencoder network to predict the growth of fractures on the surface of the wheels. With the help of our inspection approach, it is possible to carry out conditionbased predictive maintenance of the OHT vehicles. This approach promises cost savings compared to routine or time-based strategies for preventive maintenance, as we can carry out maintenance tasks only when they are justified.", issn = "2192-9084", doi = "10.2195/lj_Proc_zhu_en_202112_01", url = "http://nbn-resolving.de/urn:nbn:de:0009-14-54509" }Download
RIS
TY - JOUR AU - Zhu, Hailong AU - Rank, Sebastian AU - Schmidt, Thorsten PY - 2021 DA - 2021// TI - Automated, AI-based Inspection of Drive Wheels on Overhead Hoist Transport Vehicles JO - Logistics Journal : Proceedings VL - 2021 IS - 17 KW - Fehlererkennung KW - OHT KW - Verschleißmodell KW - Zustandsüberwachung KW - autoencoder KW - condition monitoring KW - faults detection KW - wear out model AB - Overhead hoist transport systems are used to transport wafers in 300 mm semiconductor factories. These rail-based systems usually consist of hundreds of vehicles to ensure fast and safe transport of wafers between tools. Faults of individual vehicles can cause damage to the transferred goods and production downtimes. To minimize the risk of failure, extensive preventive maintenance of the vehicle's heavily stressed components is required. This includes the chassis and drive wheels. This article describes an automatic inspection approach that can drastically accelerate the inspection process. We have developed an automatic inspection approach for the drive wheels that can drastically speed up the inspection process. From the data obtained, we trained a deep convolutional autoencoder network to predict the growth of fractures on the surface of the wheels. With the help of our inspection approach, it is possible to carry out conditionbased predictive maintenance of the OHT vehicles. This approach promises cost savings compared to routine or time-based strategies for preventive maintenance, as we can carry out maintenance tasks only when they are justified. SN - 2192-9084 UR - http://nbn-resolving.de/urn:nbn:de:0009-14-54509 DO - 10.2195/lj_Proc_zhu_en_202112_01 ID - zhu2021 ER -Download
Wordbib
<?xml version="1.0" encoding="UTF-8"?> <b:Sources SelectedStyle="" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" > <b:Source> <b:Tag>zhu2021</b:Tag> <b:SourceType>ArticleInAPeriodical</b:SourceType> <b:Year>2021</b:Year> <b:PeriodicalTitle>Logistics Journal : Proceedings</b:PeriodicalTitle> <b:Volume>2021</b:Volume> <b:Issue>17</b:Issue> <b:Url>http://nbn-resolving.de/urn:nbn:de:0009-14-54509</b:Url> <b:Url>http://dx.doi.org/10.2195/lj_Proc_zhu_en_202112_01</b:Url> <b:Author> <b:Author><b:NameList> <b:Person><b:Last>Zhu</b:Last><b:First>Hailong</b:First></b:Person> <b:Person><b:Last>Rank</b:Last><b:First>Sebastian</b:First></b:Person> <b:Person><b:Last>Schmidt</b:Last><b:First>Thorsten</b:First></b:Person> </b:NameList></b:Author> </b:Author> <b:Title>Automated, AI-based Inspection of Drive Wheels on Overhead Hoist Transport Vehicles</b:Title> <b:Comments>Overhead hoist transport systems are used to transport wafers in 300 mm semiconductor factories. These rail-based systems usually consist of hundreds of vehicles to ensure fast and safe transport of wafers between tools. Faults of individual vehicles can cause damage to the transferred goods and production downtimes. To minimize the risk of failure, extensive preventive maintenance of the vehicle's heavily stressed components is required. This includes the chassis and drive wheels. This article describes an automatic inspection approach that can drastically accelerate the inspection process. We have developed an automatic inspection approach for the drive wheels that can drastically speed up the inspection process. From the data obtained, we trained a deep convolutional autoencoder network to predict the growth of fractures on the surface of the wheels. With the help of our inspection approach, it is possible to carry out conditionbased predictive maintenance of the OHT vehicles. This approach promises cost savings compared to routine or time-based strategies for preventive maintenance, as we can carry out maintenance tasks only when they are justified.</b:Comments> </b:Source> </b:Sources>Download
ISI
PT Journal AU Zhu, H Rank, S Schmidt, T TI Automated, AI-based Inspection of Drive Wheels on Overhead Hoist Transport Vehicles SO Logistics Journal : Proceedings PY 2021 VL 2021 IS 17 DI 10.2195/lj_Proc_zhu_en_202112_01 DE Fehlererkennung; OHT; Verschleißmodell; Zustandsüberwachung; autoencoder; condition monitoring; faults detection; wear out model AB Overhead hoist transport systems are used to transport wafers in 300 mm semiconductor factories. These rail-based systems usually consist of hundreds of vehicles to ensure fast and safe transport of wafers between tools. Faults of individual vehicles can cause damage to the transferred goods and production downtimes. To minimize the risk of failure, extensive preventive maintenance of the vehicle's heavily stressed components is required. This includes the chassis and drive wheels. This article describes an automatic inspection approach that can drastically accelerate the inspection process. We have developed an automatic inspection approach for the drive wheels that can drastically speed up the inspection process. From the data obtained, we trained a deep convolutional autoencoder network to predict the growth of fractures on the surface of the wheels. With the help of our inspection approach, it is possible to carry out conditionbased predictive maintenance of the OHT vehicles. This approach promises cost savings compared to routine or time-based strategies for preventive maintenance, as we can carry out maintenance tasks only when they are justified. ERDownload
Mods
<mods> <titleInfo> <title>Automated, AI-based Inspection of Drive Wheels on Overhead Hoist Transport Vehicles</title> </titleInfo> <name type="personal"> <namePart type="family">Zhu</namePart> <namePart type="given">Hailong</namePart> </name> <name type="personal"> <namePart type="family">Rank</namePart> <namePart type="given">Sebastian</namePart> </name> <name type="personal"> <namePart type="family">Schmidt</namePart> <namePart type="given">Thorsten</namePart> </name> <abstract>Overhead hoist transport systems are used to transport wafers in 300 mm semiconductor factories. These rail-based systems usually consist of hundreds of vehicles to ensure fast and safe transport of wafers between tools. Faults of individual vehicles can cause damage to the transferred goods and production downtimes. To minimize the risk of failure, extensive preventive maintenance of the vehicle's heavily stressed components is required. This includes the chassis and drive wheels. This article describes an automatic inspection approach that can drastically accelerate the inspection process. We have developed an automatic inspection approach for the drive wheels that can drastically speed up the inspection process. From the data obtained, we trained a deep convolutional autoencoder network to predict the growth of fractures on the surface of the wheels. With the help of our inspection approach, it is possible to carry out conditionbased predictive maintenance of the OHT vehicles. This approach promises cost savings compared to routine or time-based strategies for preventive maintenance, as we can carry out maintenance tasks only when they are justified.</abstract> <subject> <topic>Fehlererkennung</topic> <topic>OHT</topic> <topic>Verschleißmodell</topic> <topic>Zustandsüberwachung</topic> <topic>autoencoder</topic> <topic>condition monitoring</topic> <topic>faults detection</topic> <topic>wear out model</topic> </subject> <classification authority="ddc">620</classification> <relatedItem type="host"> <genre authority="marcgt">periodical</genre> <genre>academic journal</genre> <titleInfo> <title>Logistics Journal : Proceedings</title> </titleInfo> <part> <detail type="volume"> <number>2021</number> </detail> <detail type="issue"> <number>17</number> </detail> <date>2021</date> </part> </relatedItem> <identifier type="issn">2192-9084</identifier> <identifier type="urn">urn:nbn:de:0009-14-54509</identifier> <identifier type="doi">10.2195/lj_Proc_zhu_en_202112_01</identifier> <identifier type="uri">http://nbn-resolving.de/urn:nbn:de:0009-14-54509</identifier> <identifier type="citekey">zhu2021</identifier> </mods>Download
Full Metadata
Bibliographic Citation | Logistics Journal : referierte Veröffentlichungen, Vol. 2021, Iss. 17 |
---|---|
Title |
Automated, AI-based Inspection of Drive Wheels on Overhead Hoist Transport Vehicles (eng) |
Author | Hailong Zhu, Sebastian Rank, Thorsten Schmidt |
Language | eng |
Abstract | Overhead hoist transport systems are used to transport wafers in 300 mm semiconductor factories. These rail-based systems usually consist of hundreds of vehicles to ensure fast and safe transport of wafers between tools. Faults of individual vehicles can cause damage to the transferred goods and production downtimes. To minimize the risk of failure, extensive preventive maintenance of the vehicle's heavily stressed components is required. This includes the chassis and drive wheels. This article describes an automatic inspection approach that can drastically accelerate the inspection process. We have developed an automatic inspection approach for the drive wheels that can drastically speed up the inspection process. From the data obtained, we trained a deep convolutional autoencoder network to predict the growth of fractures on the surface of the wheels. With the help of our inspection approach, it is possible to carry out conditionbased predictive maintenance of the OHT vehicles. This approach promises cost savings compared to routine or time-based strategies for preventive maintenance, as we can carry out maintenance tasks only when they are justified. Overhead Hoist Transportsysteme werden zum Transport von Wafern in 300-mm-Halbleiterfabriken eingesetzt. Diese schienenbasierten Systeme bestehen normalerweise aus Hunderten von Fahrzeugen, um einen schnellen und sicheren Transport von Wafern zwischen Werkzeugen zu gewährleisten. Fehler einzelner Fahrzeuge können zu Schäden an den übergebenen Waren und Produktionsausfällen führen. Um das Ausfallrisiko zu minimieren, ist eine umfassende vorbeugende Wartung der stark beanspruchten Fahrzeugkomponenten erforderlich. Wir haben einen automatischen Inspektionsansatz für die Antriebsräder entwickelt, der den Inspektionsprozess drastisch beschleunigen kann. Aus den erhaltenen Daten haben wir ein deep convolutional-Autoencoder-Netzwerk trainiert, um das Wachstum von Frakturen auf der Oberfläche der Räder vorherzusagen. Mit Hilfe unser Inspektionsansatz kann eine zustandsbasierte prädiktive Wartung der OHT-Fahrzeuge durchgeführt werden. Dieser Ansatz verspricht Kosteneinsparungen gegenüber routinemäßigen oder zeitbasierten Strategien zur präventiven Wartung, da Aufgaben nur dann ausgeführt werden, wenn dies gerechtfertigt ist. |
Subject | Fehlererkennung, OHT, Verschleißmodell, Zustandsüberwachung, autoencoder, condition monitoring, faults detection, wear out model |
DDC | 620 |
Rights | fDPPL |
URN: | urn:nbn:de:0009-14-54509 |
DOI | https://doi.org/10.2195/lj_Proc_zhu_en_202112_01 |