You are here: Home Proceedings
Document Actions

Citation and metadata

Recommended citation

Wei F, Xiang F, Chu B, Noche B (2021). Feature fusion algorithm based on modular scalable integrated sensor behavior recognition. Logistics Journal : Proceedings, Vol. 2021. (urn:nbn:de:0009-14-54471)

Download Citation

Endnote

%0 Journal Article
%T Feature fusion algorithm based on modular scalable integrated sensor behavior recognition
%A Wei, Fuyin
%A Xiang, Fei
%A Chu, Bohao
%A Noche, Bernd
%J Logistics Journal : Proceedings
%D 2021
%V 2021
%N 17
%@ 2192-9084
%F wei2021
%X Based on the behavior recognition model of Convolutional Neural Network, we developed a modular scalable integrated (MSI) sensor system together with a signal feature fusion algorithm. The integrated sensor system can obtain high-quality signals without having to be embedded in the body of the object and has good modular scalability and timeliness. The feature fusion algorithm improves the recognition accuracy as well as the robustness of the model.
%L 620
%K Convolutional Neural Network
%K Feature-Fusion
%K Genauigkeit
%K Robustheit
%K accuracy
%K feature fusion
%K modular scalable integrated sensor
%K modularer skalierbarer integrierter Sensor
%K robustness
%R 10.2195/lj_Proc_wei_en_202112_01
%U http://nbn-resolving.de/urn:nbn:de:0009-14-54471
%U http://dx.doi.org/10.2195/lj_Proc_wei_en_202112_01

Download

Bibtex

@Article{wei2021,
  author = 	"Wei, Fuyin
		and Xiang, Fei
		and Chu, Bohao
		and Noche, Bernd",
  title = 	"Feature fusion algorithm based on modular scalable integrated sensor behavior recognition",
  journal = 	"Logistics Journal : Proceedings",
  year = 	"2021",
  volume = 	"2021",
  number = 	"17",
  keywords = 	"Convolutional Neural Network; Feature-Fusion; Genauigkeit; Robustheit; accuracy; feature fusion; modular scalable integrated sensor; modularer skalierbarer integrierter Sensor; robustness",
  abstract = 	"Based on the behavior recognition model of Convolutional Neural Network, we developed a modular scalable integrated (MSI) sensor system together with a signal feature fusion algorithm. The integrated sensor system can obtain high-quality signals without having to be embedded in the body of the object and has good modular scalability and timeliness. The feature fusion algorithm improves the recognition accuracy as well as the robustness of the model.",
  issn = 	"2192-9084",
  doi = 	"10.2195/lj_Proc_wei_en_202112_01",
  url = 	"http://nbn-resolving.de/urn:nbn:de:0009-14-54471"
}

Download

RIS

TY  - JOUR
AU  - Wei, Fuyin
AU  - Xiang, Fei
AU  - Chu, Bohao
AU  - Noche, Bernd
PY  - 2021
DA  - 2021//
TI  - Feature fusion algorithm based on modular scalable integrated sensor behavior recognition
JO  - Logistics Journal : Proceedings
VL  - 2021
IS  - 17
KW  - Convolutional Neural Network
KW  - Feature-Fusion
KW  - Genauigkeit
KW  - Robustheit
KW  - accuracy
KW  - feature fusion
KW  - modular scalable integrated sensor
KW  - modularer skalierbarer integrierter Sensor
KW  - robustness
AB  - Based on the behavior recognition model of Convolutional Neural Network, we developed a modular scalable integrated (MSI) sensor system together with a signal feature fusion algorithm. The integrated sensor system can obtain high-quality signals without having to be embedded in the body of the object and has good modular scalability and timeliness. The feature fusion algorithm improves the recognition accuracy as well as the robustness of the model.
SN  - 2192-9084
UR  - http://nbn-resolving.de/urn:nbn:de:0009-14-54471
DO  - 10.2195/lj_Proc_wei_en_202112_01
ID  - wei2021
ER  - 
Download

Wordbib

<?xml version="1.0" encoding="UTF-8"?>
<b:Sources SelectedStyle="" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography"  xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" >
<b:Source>
<b:Tag>wei2021</b:Tag>
<b:SourceType>ArticleInAPeriodical</b:SourceType>
<b:Year>2021</b:Year>
<b:PeriodicalTitle>Logistics Journal : Proceedings</b:PeriodicalTitle>
<b:Volume>2021</b:Volume>
<b:Issue>17</b:Issue>
<b:Url>http://nbn-resolving.de/urn:nbn:de:0009-14-54471</b:Url>
<b:Url>http://dx.doi.org/10.2195/lj_Proc_wei_en_202112_01</b:Url>
<b:Author>
<b:Author><b:NameList>
<b:Person><b:Last>Wei</b:Last><b:First>Fuyin</b:First></b:Person>
<b:Person><b:Last>Xiang</b:Last><b:First>Fei</b:First></b:Person>
<b:Person><b:Last>Chu</b:Last><b:First>Bohao</b:First></b:Person>
<b:Person><b:Last>Noche</b:Last><b:First>Bernd</b:First></b:Person>
</b:NameList></b:Author>
</b:Author>
<b:Title>Feature fusion algorithm based on modular scalable integrated sensor behavior recognition</b:Title>
<b:Comments>Based on the behavior recognition model of Convolutional Neural Network, we developed a modular scalable integrated (MSI) sensor system together with a signal feature fusion algorithm. The integrated sensor system can obtain high-quality signals without having to be embedded in the body of the object and has good modular scalability and timeliness. The feature fusion algorithm improves the recognition accuracy as well as the robustness of the model.</b:Comments>
</b:Source>
</b:Sources>
Download

ISI

PT Journal
AU Wei, F
   Xiang, F
   Chu, B
   Noche, B
TI Feature fusion algorithm based on modular scalable integrated sensor behavior recognition
SO Logistics Journal : Proceedings
PY 2021
VL 2021
IS 17
DI 10.2195/lj_Proc_wei_en_202112_01
DE Convolutional Neural Network; Feature-Fusion; Genauigkeit; Robustheit; accuracy; feature fusion; modular scalable integrated sensor; modularer skalierbarer integrierter Sensor; robustness
AB Based on the behavior recognition model of Convolutional Neural Network, we developed a modular scalable integrated (MSI) sensor system together with a signal feature fusion algorithm. The integrated sensor system can obtain high-quality signals without having to be embedded in the body of the object and has good modular scalability and timeliness. The feature fusion algorithm improves the recognition accuracy as well as the robustness of the model.
ER

Download

Mods

<mods>
  <titleInfo>
    <title>Feature fusion algorithm based on modular scalable integrated sensor behavior recognition</title>
  </titleInfo>
  <name type="personal">
    <namePart type="family">Wei</namePart>
    <namePart type="given">Fuyin</namePart>
  </name>
  <name type="personal">
    <namePart type="family">Xiang</namePart>
    <namePart type="given">Fei</namePart>
  </name>
  <name type="personal">
    <namePart type="family">Chu</namePart>
    <namePart type="given">Bohao</namePart>
  </name>
  <name type="personal">
    <namePart type="family">Noche</namePart>
    <namePart type="given">Bernd</namePart>
  </name>
  <abstract>Based on the behavior recognition model of Convolutional Neural Network, we developed a modular scalable integrated (MSI) sensor system together with a signal feature fusion algorithm. The integrated sensor system can obtain high-quality signals without having to be embedded in the body of the object and has good modular scalability and timeliness. The feature fusion algorithm improves the recognition accuracy as well as the robustness of the model.</abstract>
  <subject>
    <topic>Convolutional Neural Network</topic>
    <topic>Feature-Fusion</topic>
    <topic>Genauigkeit</topic>
    <topic>Robustheit</topic>
    <topic>accuracy</topic>
    <topic>feature fusion</topic>
    <topic>modular scalable integrated sensor</topic>
    <topic>modularer skalierbarer integrierter Sensor</topic>
    <topic>robustness</topic>
  </subject>
  <classification authority="ddc">620</classification>
  <relatedItem type="host">
    <genre authority="marcgt">periodical</genre>
    <genre>academic journal</genre>
    <titleInfo>
      <title>Logistics Journal : Proceedings</title>
    </titleInfo>
    <part>
      <detail type="volume">
        <number>2021</number>
      </detail>
      <detail type="issue">
        <number>17</number>
      </detail>
      <date>2021</date>
    </part>
  </relatedItem>
  <identifier type="issn">2192-9084</identifier>
  <identifier type="urn">urn:nbn:de:0009-14-54471</identifier>
  <identifier type="doi">10.2195/lj_Proc_wei_en_202112_01</identifier>
  <identifier type="uri">http://nbn-resolving.de/urn:nbn:de:0009-14-54471</identifier>
  <identifier type="citekey">wei2021</identifier>
</mods>
Download

Full Metadata