You are here: Home Proceedings
Document Actions

Citation and metadata

Recommended citation

Wei L, Wei F, Schmitz S, Kunal K (2021). Optimization of Container Relocation Problem via Reinforcement Learning. Logistics Journal : Proceedings, Vol. 2021. (urn:nbn:de:0009-14-54466)

Download Citation

Endnote

%0 Journal Article
%T Optimization of Container Relocation Problem via Reinforcement Learning
%A Wei, Lei
%A Wei, Fuyin
%A Schmitz, Sandra
%A Kunal, Kunal
%J Logistics Journal : Proceedings
%D 2021
%V 2021
%N 17
%@ 2192-9084
%F wei2021
%X This paper presents an optimization method of Container Relocation Problem (CRP) via Reinforcement Learning (RL) based on heuristic rules. The method to calculate theoretical lowest relocation rate is also briefly explained. As the result, training models for different dimensional bays are provided. Compared to the theoretical value, the result relocation rate is acceptable with high inference speed. Furthermore, extended CRP in block will be briefly demonstrated.
%L 620
%K Block Relocation Problem
%K Container Relocation Problem
%K ML-Agents
%K Reinforcement Learning
%R 10.2195/lj_Proc_wei_en_202112_02
%U http://nbn-resolving.de/urn:nbn:de:0009-14-54466
%U http://dx.doi.org/10.2195/lj_Proc_wei_en_202112_02

Download

Bibtex

@Article{wei2021,
  author = 	"Wei, Lei
		and Wei, Fuyin
		and Schmitz, Sandra
		and Kunal, Kunal",
  title = 	"Optimization of Container Relocation Problem via Reinforcement Learning",
  journal = 	"Logistics Journal : Proceedings",
  year = 	"2021",
  volume = 	"2021",
  number = 	"17",
  keywords = 	"Block Relocation Problem; Container Relocation Problem; ML-Agents; Reinforcement Learning",
  abstract = 	"This paper presents an optimization method of Container Relocation Problem (CRP) via Reinforcement Learning (RL) based on heuristic rules. The method to calculate theoretical lowest relocation rate is also briefly explained. As the result, training models for different dimensional bays are provided. Compared to the theoretical value, the result relocation rate is acceptable with high inference speed. Furthermore, extended CRP in block will be briefly demonstrated.",
  issn = 	"2192-9084",
  doi = 	"10.2195/lj_Proc_wei_en_202112_02",
  url = 	"http://nbn-resolving.de/urn:nbn:de:0009-14-54466"
}

Download

RIS

TY  - JOUR
AU  - Wei, Lei
AU  - Wei, Fuyin
AU  - Schmitz, Sandra
AU  - Kunal, Kunal
PY  - 2021
DA  - 2021//
TI  - Optimization of Container Relocation Problem via Reinforcement Learning
JO  - Logistics Journal : Proceedings
VL  - 2021
IS  - 17
KW  - Block Relocation Problem
KW  - Container Relocation Problem
KW  - ML-Agents
KW  - Reinforcement Learning
AB  - This paper presents an optimization method of Container Relocation Problem (CRP) via Reinforcement Learning (RL) based on heuristic rules. The method to calculate theoretical lowest relocation rate is also briefly explained. As the result, training models for different dimensional bays are provided. Compared to the theoretical value, the result relocation rate is acceptable with high inference speed. Furthermore, extended CRP in block will be briefly demonstrated.
SN  - 2192-9084
UR  - http://nbn-resolving.de/urn:nbn:de:0009-14-54466
DO  - 10.2195/lj_Proc_wei_en_202112_02
ID  - wei2021
ER  - 
Download

Wordbib

<?xml version="1.0" encoding="UTF-8"?>
<b:Sources SelectedStyle="" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography"  xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" >
<b:Source>
<b:Tag>wei2021</b:Tag>
<b:SourceType>ArticleInAPeriodical</b:SourceType>
<b:Year>2021</b:Year>
<b:PeriodicalTitle>Logistics Journal : Proceedings</b:PeriodicalTitle>
<b:Volume>2021</b:Volume>
<b:Issue>17</b:Issue>
<b:Url>http://nbn-resolving.de/urn:nbn:de:0009-14-54466</b:Url>
<b:Url>http://dx.doi.org/10.2195/lj_Proc_wei_en_202112_02</b:Url>
<b:Author>
<b:Author><b:NameList>
<b:Person><b:Last>Wei</b:Last><b:First>Lei</b:First></b:Person>
<b:Person><b:Last>Wei</b:Last><b:First>Fuyin</b:First></b:Person>
<b:Person><b:Last>Schmitz</b:Last><b:First>Sandra</b:First></b:Person>
<b:Person><b:Last>Kunal</b:Last><b:First>Kunal</b:First></b:Person>
</b:NameList></b:Author>
</b:Author>
<b:Title>Optimization of Container Relocation Problem via Reinforcement Learning</b:Title>
<b:Comments>This paper presents an optimization method of Container Relocation Problem (CRP) via Reinforcement Learning (RL) based on heuristic rules. The method to calculate theoretical lowest relocation rate is also briefly explained. As the result, training models for different dimensional bays are provided. Compared to the theoretical value, the result relocation rate is acceptable with high inference speed. Furthermore, extended CRP in block will be briefly demonstrated.</b:Comments>
</b:Source>
</b:Sources>
Download

ISI

PT Journal
AU Wei, L
   Wei, F
   Schmitz, S
   Kunal, K
TI Optimization of Container Relocation Problem via Reinforcement Learning
SO Logistics Journal : Proceedings
PY 2021
VL 2021
IS 17
DI 10.2195/lj_Proc_wei_en_202112_02
DE Block Relocation Problem; Container Relocation Problem; ML-Agents; Reinforcement Learning
AB This paper presents an optimization method of Container Relocation Problem (CRP) via Reinforcement Learning (RL) based on heuristic rules. The method to calculate theoretical lowest relocation rate is also briefly explained. As the result, training models for different dimensional bays are provided. Compared to the theoretical value, the result relocation rate is acceptable with high inference speed. Furthermore, extended CRP in block will be briefly demonstrated.
ER

Download

Mods

<mods>
  <titleInfo>
    <title>Optimization of Container Relocation Problem via Reinforcement Learning</title>
  </titleInfo>
  <name type="personal">
    <namePart type="family">Wei</namePart>
    <namePart type="given">Lei</namePart>
  </name>
  <name type="personal">
    <namePart type="family">Wei</namePart>
    <namePart type="given">Fuyin</namePart>
  </name>
  <name type="personal">
    <namePart type="family">Schmitz</namePart>
    <namePart type="given">Sandra</namePart>
  </name>
  <name type="personal">
    <namePart type="family">Kunal</namePart>
    <namePart type="given">Kunal</namePart>
  </name>
  <abstract>This paper presents an optimization method of Container Relocation Problem (CRP) via Reinforcement Learning (RL) based on heuristic rules. The method to calculate theoretical lowest relocation rate is also briefly explained. As the result, training models for different dimensional bays are provided. Compared to the theoretical value, the result relocation rate is acceptable with high inference speed. Furthermore, extended CRP in block will be briefly demonstrated.</abstract>
  <subject>
    <topic>Block Relocation Problem</topic>
    <topic>Container Relocation Problem</topic>
    <topic>ML-Agents</topic>
    <topic>Reinforcement Learning</topic>
  </subject>
  <classification authority="ddc">620</classification>
  <relatedItem type="host">
    <genre authority="marcgt">periodical</genre>
    <genre>academic journal</genre>
    <titleInfo>
      <title>Logistics Journal : Proceedings</title>
    </titleInfo>
    <part>
      <detail type="volume">
        <number>2021</number>
      </detail>
      <detail type="issue">
        <number>17</number>
      </detail>
      <date>2021</date>
    </part>
  </relatedItem>
  <identifier type="issn">2192-9084</identifier>
  <identifier type="urn">urn:nbn:de:0009-14-54466</identifier>
  <identifier type="doi">10.2195/lj_Proc_wei_en_202112_02</identifier>
  <identifier type="uri">http://nbn-resolving.de/urn:nbn:de:0009-14-54466</identifier>
  <identifier type="citekey">wei2021</identifier>
</mods>
Download

Full Metadata