Citation and metadata
Recommended citation
Wei L, Wei F, Schmitz S, Kunal K (2021). Optimization of Container Relocation Problem via Reinforcement Learning. Logistics Journal : Proceedings, Vol. 2021. (urn:nbn:de:0009-14-54466)
Download Citation
Endnote
%0 Journal Article %T Optimization of Container Relocation Problem via Reinforcement Learning %A Wei, Lei %A Wei, Fuyin %A Schmitz, Sandra %A Kunal, Kunal %J Logistics Journal : Proceedings %D 2021 %V 2021 %N 17 %@ 2192-9084 %F wei2021 %X This paper presents an optimization method of Container Relocation Problem (CRP) via Reinforcement Learning (RL) based on heuristic rules. The method to calculate theoretical lowest relocation rate is also briefly explained. As the result, training models for different dimensional bays are provided. Compared to the theoretical value, the result relocation rate is acceptable with high inference speed. Furthermore, extended CRP in block will be briefly demonstrated. %L 620 %K Block Relocation Problem %K Container Relocation Problem %K ML-Agents %K Reinforcement Learning %R 10.2195/lj_Proc_wei_en_202112_02 %U http://nbn-resolving.de/urn:nbn:de:0009-14-54466 %U http://dx.doi.org/10.2195/lj_Proc_wei_en_202112_02Download
Bibtex
@Article{wei2021, author = "Wei, Lei and Wei, Fuyin and Schmitz, Sandra and Kunal, Kunal", title = "Optimization of Container Relocation Problem via Reinforcement Learning", journal = "Logistics Journal : Proceedings", year = "2021", volume = "2021", number = "17", keywords = "Block Relocation Problem; Container Relocation Problem; ML-Agents; Reinforcement Learning", abstract = "This paper presents an optimization method of Container Relocation Problem (CRP) via Reinforcement Learning (RL) based on heuristic rules. The method to calculate theoretical lowest relocation rate is also briefly explained. As the result, training models for different dimensional bays are provided. Compared to the theoretical value, the result relocation rate is acceptable with high inference speed. Furthermore, extended CRP in block will be briefly demonstrated.", issn = "2192-9084", doi = "10.2195/lj_Proc_wei_en_202112_02", url = "http://nbn-resolving.de/urn:nbn:de:0009-14-54466" }Download
RIS
TY - JOUR AU - Wei, Lei AU - Wei, Fuyin AU - Schmitz, Sandra AU - Kunal, Kunal PY - 2021 DA - 2021// TI - Optimization of Container Relocation Problem via Reinforcement Learning JO - Logistics Journal : Proceedings VL - 2021 IS - 17 KW - Block Relocation Problem KW - Container Relocation Problem KW - ML-Agents KW - Reinforcement Learning AB - This paper presents an optimization method of Container Relocation Problem (CRP) via Reinforcement Learning (RL) based on heuristic rules. The method to calculate theoretical lowest relocation rate is also briefly explained. As the result, training models for different dimensional bays are provided. Compared to the theoretical value, the result relocation rate is acceptable with high inference speed. Furthermore, extended CRP in block will be briefly demonstrated. SN - 2192-9084 UR - http://nbn-resolving.de/urn:nbn:de:0009-14-54466 DO - 10.2195/lj_Proc_wei_en_202112_02 ID - wei2021 ER -Download
Wordbib
<?xml version="1.0" encoding="UTF-8"?> <b:Sources SelectedStyle="" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" > <b:Source> <b:Tag>wei2021</b:Tag> <b:SourceType>ArticleInAPeriodical</b:SourceType> <b:Year>2021</b:Year> <b:PeriodicalTitle>Logistics Journal : Proceedings</b:PeriodicalTitle> <b:Volume>2021</b:Volume> <b:Issue>17</b:Issue> <b:Url>http://nbn-resolving.de/urn:nbn:de:0009-14-54466</b:Url> <b:Url>http://dx.doi.org/10.2195/lj_Proc_wei_en_202112_02</b:Url> <b:Author> <b:Author><b:NameList> <b:Person><b:Last>Wei</b:Last><b:First>Lei</b:First></b:Person> <b:Person><b:Last>Wei</b:Last><b:First>Fuyin</b:First></b:Person> <b:Person><b:Last>Schmitz</b:Last><b:First>Sandra</b:First></b:Person> <b:Person><b:Last>Kunal</b:Last><b:First>Kunal</b:First></b:Person> </b:NameList></b:Author> </b:Author> <b:Title>Optimization of Container Relocation Problem via Reinforcement Learning</b:Title> <b:Comments>This paper presents an optimization method of Container Relocation Problem (CRP) via Reinforcement Learning (RL) based on heuristic rules. The method to calculate theoretical lowest relocation rate is also briefly explained. As the result, training models for different dimensional bays are provided. Compared to the theoretical value, the result relocation rate is acceptable with high inference speed. Furthermore, extended CRP in block will be briefly demonstrated.</b:Comments> </b:Source> </b:Sources>Download
ISI
PT Journal AU Wei, L Wei, F Schmitz, S Kunal, K TI Optimization of Container Relocation Problem via Reinforcement Learning SO Logistics Journal : Proceedings PY 2021 VL 2021 IS 17 DI 10.2195/lj_Proc_wei_en_202112_02 DE Block Relocation Problem; Container Relocation Problem; ML-Agents; Reinforcement Learning AB This paper presents an optimization method of Container Relocation Problem (CRP) via Reinforcement Learning (RL) based on heuristic rules. The method to calculate theoretical lowest relocation rate is also briefly explained. As the result, training models for different dimensional bays are provided. Compared to the theoretical value, the result relocation rate is acceptable with high inference speed. Furthermore, extended CRP in block will be briefly demonstrated. ERDownload
Mods
<mods> <titleInfo> <title>Optimization of Container Relocation Problem via Reinforcement Learning</title> </titleInfo> <name type="personal"> <namePart type="family">Wei</namePart> <namePart type="given">Lei</namePart> </name> <name type="personal"> <namePart type="family">Wei</namePart> <namePart type="given">Fuyin</namePart> </name> <name type="personal"> <namePart type="family">Schmitz</namePart> <namePart type="given">Sandra</namePart> </name> <name type="personal"> <namePart type="family">Kunal</namePart> <namePart type="given">Kunal</namePart> </name> <abstract>This paper presents an optimization method of Container Relocation Problem (CRP) via Reinforcement Learning (RL) based on heuristic rules. The method to calculate theoretical lowest relocation rate is also briefly explained. As the result, training models for different dimensional bays are provided. Compared to the theoretical value, the result relocation rate is acceptable with high inference speed. Furthermore, extended CRP in block will be briefly demonstrated.</abstract> <subject> <topic>Block Relocation Problem</topic> <topic>Container Relocation Problem</topic> <topic>ML-Agents</topic> <topic>Reinforcement Learning</topic> </subject> <classification authority="ddc">620</classification> <relatedItem type="host"> <genre authority="marcgt">periodical</genre> <genre>academic journal</genre> <titleInfo> <title>Logistics Journal : Proceedings</title> </titleInfo> <part> <detail type="volume"> <number>2021</number> </detail> <detail type="issue"> <number>17</number> </detail> <date>2021</date> </part> </relatedItem> <identifier type="issn">2192-9084</identifier> <identifier type="urn">urn:nbn:de:0009-14-54466</identifier> <identifier type="doi">10.2195/lj_Proc_wei_en_202112_02</identifier> <identifier type="uri">http://nbn-resolving.de/urn:nbn:de:0009-14-54466</identifier> <identifier type="citekey">wei2021</identifier> </mods>Download
Full Metadata
Bibliographic Citation | Logistics Journal : referierte Veröffentlichungen, Vol. 2021, Iss. 17 |
---|---|
Title |
Optimization of Container Relocation Problem via Reinforcement Learning (eng) |
Author | Lei Wei, Fuyin Wei, Sandra Schmitz, Kunal Kunal |
Language | eng |
Abstract | This paper presents an optimization method of Container Relocation Problem (CRP) via Reinforcement Learning (RL) based on heuristic rules. The method to calculate theoretical lowest relocation rate is also briefly explained. As the result, training models for different dimensional bays are provided. Compared to the theoretical value, the result relocation rate is acceptable with high inference speed. Furthermore, extended CRP in block will be briefly demonstrated. In dieser Arbeit wird eine Optimierungsmethode für das Container Relocation Problem (CRP) mittels Reinforcement Learning (RL) vorgestellt, die auf heuristischen Regeln basiert. Eine Methode zur Berechnung der theoretisch niedrigsten Relocation Rate wird ebenfalls erläutert. Als Ergebnis werden Trainingsmodelle für unterschiedlich dimensionierte Bays bereitgestellt. Verglichen mit dem theoretischen Wert, ist die Relocation Rate zufriedenstellend und die Inferenz-Geschwindigkeit hoch. Außerdem wird eine erweiterte Version des CRPs die sich auf einen ganzen Containerblock bezieht, präsentiert. |
Subject | Block Relocation Problem, Container Relocation Problem, ML-Agents, Reinforcement Learning |
DDC | 620 |
Rights | fDPPL |
URN: | urn:nbn:de:0009-14-54466 |
DOI | https://doi.org/10.2195/lj_Proc_wei_en_202112_02 |