Citation and metadata
Recommended citation
Klos ME, Pagani P (2021). Using Deep Neural Networks to Measure Puffer Levels in Real-time with Edge-Computing. Logistics Journal : Proceedings, Vol. 2021. (urn:nbn:de:0009-14-54221)
Download Citation
Endnote
%0 Journal Article %T Using Deep Neural Networks to Measure Puffer Levels in Real-time with Edge-Computing %A Klos, Matthias Elia %A Pagani, Paolo %J Logistics Journal : Proceedings %D 2021 %V 2021 %N 17 %@ 2192-9084 %F klos2021 %X Technological advances and increasing data traffic in the IoT environment lead to the relocation of sophisticated data processing to the edge of networks. At the same time, powerful object detection approaches based on deep neural networks have been developed in recent years. In this paper, an intelligent camera based on deep learning algorithms and consisting of low-cost hardware with limited computational and storage capacity is presented. The developed object detection solution enables real-time monitoring of the inventory of filled and empty small load carriers in a buffer zone. %L 620 %K Computer Vision %K Deep Learning %K Einplatinencomputer %K Object Detection %K Objekterkennung %K Single-Board Computer %K YOLO %R 10.2195/lj_Proc_klos_en_202112_01 %U http://nbn-resolving.de/urn:nbn:de:0009-14-54221 %U http://dx.doi.org/10.2195/lj_Proc_klos_en_202112_01Download
Bibtex
@Article{klos2021, author = "Klos, Matthias Elia and Pagani, Paolo", title = "Using Deep Neural Networks to Measure Puffer Levels in Real-time with Edge-Computing", journal = "Logistics Journal : Proceedings", year = "2021", volume = "2021", number = "17", keywords = "Computer Vision; Deep Learning; Einplatinencomputer; Object Detection; Objekterkennung; Single-Board Computer; YOLO", abstract = "Technological advances and increasing data traffic in the IoT environment lead to the relocation of sophisticated data processing to the edge of networks. At the same time, powerful object detection approaches based on deep neural networks have been developed in recent years. In this paper, an intelligent camera based on deep learning algorithms and consisting of low-cost hardware with limited computational and storage capacity is presented. The developed object detection solution enables real-time monitoring of the inventory of filled and empty small load carriers in a buffer zone.", issn = "2192-9084", doi = "10.2195/lj_Proc_klos_en_202112_01", url = "http://nbn-resolving.de/urn:nbn:de:0009-14-54221" }Download
RIS
TY - JOUR AU - Klos, Matthias Elia AU - Pagani, Paolo PY - 2021 DA - 2021// TI - Using Deep Neural Networks to Measure Puffer Levels in Real-time with Edge-Computing JO - Logistics Journal : Proceedings VL - 2021 IS - 17 KW - Computer Vision KW - Deep Learning KW - Einplatinencomputer KW - Object Detection KW - Objekterkennung KW - Single-Board Computer KW - YOLO AB - Technological advances and increasing data traffic in the IoT environment lead to the relocation of sophisticated data processing to the edge of networks. At the same time, powerful object detection approaches based on deep neural networks have been developed in recent years. In this paper, an intelligent camera based on deep learning algorithms and consisting of low-cost hardware with limited computational and storage capacity is presented. The developed object detection solution enables real-time monitoring of the inventory of filled and empty small load carriers in a buffer zone. SN - 2192-9084 UR - http://nbn-resolving.de/urn:nbn:de:0009-14-54221 DO - 10.2195/lj_Proc_klos_en_202112_01 ID - klos2021 ER -Download
Wordbib
<?xml version="1.0" encoding="UTF-8"?> <b:Sources SelectedStyle="" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" > <b:Source> <b:Tag>klos2021</b:Tag> <b:SourceType>ArticleInAPeriodical</b:SourceType> <b:Year>2021</b:Year> <b:PeriodicalTitle>Logistics Journal : Proceedings</b:PeriodicalTitle> <b:Volume>2021</b:Volume> <b:Issue>17</b:Issue> <b:Url>http://nbn-resolving.de/urn:nbn:de:0009-14-54221</b:Url> <b:Url>http://dx.doi.org/10.2195/lj_Proc_klos_en_202112_01</b:Url> <b:Author> <b:Author><b:NameList> <b:Person><b:Last>Klos</b:Last><b:First>Matthias Elia</b:First></b:Person> <b:Person><b:Last>Pagani</b:Last><b:First>Paolo</b:First></b:Person> </b:NameList></b:Author> </b:Author> <b:Title>Using Deep Neural Networks to Measure Puffer Levels in Real-time with Edge-Computing</b:Title> <b:Comments>Technological advances and increasing data traffic in the IoT environment lead to the relocation of sophisticated data processing to the edge of networks. At the same time, powerful object detection approaches based on deep neural networks have been developed in recent years. In this paper, an intelligent camera based on deep learning algorithms and consisting of low-cost hardware with limited computational and storage capacity is presented. The developed object detection solution enables real-time monitoring of the inventory of filled and empty small load carriers in a buffer zone.</b:Comments> </b:Source> </b:Sources>Download
ISI
PT Journal AU Klos, M Pagani, P TI Using Deep Neural Networks to Measure Puffer Levels in Real-time with Edge-Computing SO Logistics Journal : Proceedings PY 2021 VL 2021 IS 17 DI 10.2195/lj_Proc_klos_en_202112_01 DE Computer Vision; Deep Learning; Einplatinencomputer; Object Detection; Objekterkennung; Single-Board Computer; YOLO AB Technological advances and increasing data traffic in the IoT environment lead to the relocation of sophisticated data processing to the edge of networks. At the same time, powerful object detection approaches based on deep neural networks have been developed in recent years. In this paper, an intelligent camera based on deep learning algorithms and consisting of low-cost hardware with limited computational and storage capacity is presented. The developed object detection solution enables real-time monitoring of the inventory of filled and empty small load carriers in a buffer zone. ERDownload
Mods
<mods> <titleInfo> <title>Using Deep Neural Networks to Measure Puffer Levels in Real-time with Edge-Computing</title> </titleInfo> <name type="personal"> <namePart type="family">Klos</namePart> <namePart type="given">Matthias Elia</namePart> </name> <name type="personal"> <namePart type="family">Pagani</namePart> <namePart type="given">Paolo</namePart> </name> <abstract>Technological advances and increasing data traffic in the IoT environment lead to the relocation of sophisticated data processing to the edge of networks. At the same time, powerful object detection approaches based on deep neural networks have been developed in recent years. In this paper, an intelligent camera based on deep learning algorithms and consisting of low-cost hardware with limited computational and storage capacity is presented. The developed object detection solution enables real-time monitoring of the inventory of filled and empty small load carriers in a buffer zone.</abstract> <subject> <topic>Computer Vision</topic> <topic>Deep Learning</topic> <topic>Einplatinencomputer</topic> <topic>Object Detection</topic> <topic>Objekterkennung</topic> <topic>Single-Board Computer</topic> <topic>YOLO</topic> </subject> <classification authority="ddc">620</classification> <relatedItem type="host"> <genre authority="marcgt">periodical</genre> <genre>academic journal</genre> <titleInfo> <title>Logistics Journal : Proceedings</title> </titleInfo> <part> <detail type="volume"> <number>2021</number> </detail> <detail type="issue"> <number>17</number> </detail> <date>2021</date> </part> </relatedItem> <identifier type="issn">2192-9084</identifier> <identifier type="urn">urn:nbn:de:0009-14-54221</identifier> <identifier type="doi">10.2195/lj_Proc_klos_en_202112_01</identifier> <identifier type="uri">http://nbn-resolving.de/urn:nbn:de:0009-14-54221</identifier> <identifier type="citekey">klos2021</identifier> </mods>Download
Full Metadata
Bibliographic Citation | Logistics Journal : referierte Veröffentlichungen, Vol. 2021, Iss. 17 |
---|---|
Title |
Using Deep Neural Networks to Measure Puffer Levels in Real-time with Edge-Computing (eng) |
Author | Matthias Elia Klos, Paolo Pagani |
Language | eng |
Abstract | Technological advances and increasing data traffic in the IoT environment lead to the relocation of sophisticated data processing to the edge of networks. At the same time, powerful object detection approaches based on deep neural networks have been developed in recent years. In this paper, an intelligent camera based on deep learning algorithms and consisting of low-cost hardware with limited computational and storage capacity is presented. The developed object detection solution enables real-time monitoring of the inventory of filled and empty small load carriers in a buffer zone. Der technologische Fortschritt und zunehmende Datenströme im IoT-Umfeld führen dazu, dass anspruchsvolle Datenverarbeitungsprozesse an den Rand von Netzwerken verlagert werden. Gleichzeitig wurden in den letzten Jahren leistungsfähige Objekterkennungsansätze entwickelt, die auf tiefen neuronalen Netzen basieren. Im Rahmen dieser Arbeit wird eine intelligente Kamera vorgestellt, welche auf Deep-Learning-Algorithmen basiert und aus kostengünstiger Hardware mit beschränkter Rechen- und Speicherkapazität besteht. Die entwickelte Objekterkennungslösung ermöglicht die Überwachung des Bestands von gefüllten und leeren Kleinladungsträgern in einer Pufferzone in Echtzeit. |
Subject | Computer Vision, Deep Learning, Einplatinencomputer, Object Detection, Objekterkennung, Single-Board Computer, YOLO |
DDC | 620 |
Rights | fDPPL |
URN: | urn:nbn:de:0009-14-54221 |
DOI | https://doi.org/10.2195/lj_Proc_klos_en_202112_01 |