Citation and metadata
Recommended citation
Hormes F, Siala A, Lieb C, Fottner J (2020). Fleet Sizing of Dynamically Routed In-plant Milk-run Vehicles Based on a Genetic Algorithm. Logistics Journal : Proceedings, Vol. 2020. (urn:nbn:de:0009-14-51420)
Download Citation
Endnote
%0 Journal Article %T Fleet Sizing of Dynamically Routed In-plant Milk-run Vehicles Based on a Genetic Algorithm %A Hormes, Fabian %A Siala, Amin %A Lieb, Christian %A Fottner, Johannes %J Logistics Journal : Proceedings %D 2020 %V 2020 %N 12 %@ 2192-9084 %F hormes2020 %X In-plant milk-run (MR) systems enable efficient supply of assembly lines in small lot sizes. One major chal-lenge for MR systems are demand fluctuations and short-term changes within schedules. Dynamic control strategies aim at increasing flexibility and efficiency of MR systems in volatile environments. This paper presents an application-oriented approach for determining the fleet size of an MR system with dynamically controlled routes based on a genetic algorithm. The approach is evaluated and discussed using a case study from a commercial vehicle manufacturer. The results show that the approach ena-bles effective analytical dimensioning of MR systems with dynamic routes. In addition, the case study indicates that the implementation of dynamic routes can lead to a reduction in fleet size. %L 620 %K Genetische Algorithmen %K In-plant milk-run %K Routenzugsysteme %K Routing-Probleme %K Steuerungsstrategien %K control strategies %K genetic algorithms %K routing problems %R 10.2195/lj_Proc_hormes_en_202012_01 %U http://nbn-resolving.de/urn:nbn:de:0009-14-51420 %U http://dx.doi.org/10.2195/lj_Proc_hormes_en_202012_01Download
Bibtex
@Article{hormes2020, author = "Hormes, Fabian and Siala, Amin and Lieb, Christian and Fottner, Johannes", title = "Fleet Sizing of Dynamically Routed In-plant Milk-run Vehicles Based on a Genetic Algorithm", journal = "Logistics Journal : Proceedings", year = "2020", volume = "2020", number = "12", keywords = "Genetische Algorithmen; In-plant milk-run; Routenzugsysteme; Routing-Probleme; Steuerungsstrategien; control strategies; genetic algorithms; routing problems", abstract = "In-plant milk-run (MR) systems enable efficient supply of assembly lines in small lot sizes. One major chal-lenge for MR systems are demand fluctuations and short-term changes within schedules. Dynamic control strategies aim at increasing flexibility and efficiency of MR systems in volatile environments. This paper presents an application-oriented approach for determining the fleet size of an MR system with dynamically controlled routes based on a genetic algorithm. The approach is evaluated and discussed using a case study from a commercial vehicle manufacturer. The results show that the approach ena-bles effective analytical dimensioning of MR systems with dynamic routes. In addition, the case study indicates that the implementation of dynamic routes can lead to a reduction in fleet size.", issn = "2192-9084", doi = "10.2195/lj_Proc_hormes_en_202012_01", url = "http://nbn-resolving.de/urn:nbn:de:0009-14-51420" }Download
RIS
TY - JOUR AU - Hormes, Fabian AU - Siala, Amin AU - Lieb, Christian AU - Fottner, Johannes PY - 2020 DA - 2020// TI - Fleet Sizing of Dynamically Routed In-plant Milk-run Vehicles Based on a Genetic Algorithm JO - Logistics Journal : Proceedings VL - 2020 IS - 12 KW - Genetische Algorithmen KW - In-plant milk-run KW - Routenzugsysteme KW - Routing-Probleme KW - Steuerungsstrategien KW - control strategies KW - genetic algorithms KW - routing problems AB - In-plant milk-run (MR) systems enable efficient supply of assembly lines in small lot sizes. One major chal-lenge for MR systems are demand fluctuations and short-term changes within schedules. Dynamic control strategies aim at increasing flexibility and efficiency of MR systems in volatile environments. This paper presents an application-oriented approach for determining the fleet size of an MR system with dynamically controlled routes based on a genetic algorithm. The approach is evaluated and discussed using a case study from a commercial vehicle manufacturer. The results show that the approach ena-bles effective analytical dimensioning of MR systems with dynamic routes. In addition, the case study indicates that the implementation of dynamic routes can lead to a reduction in fleet size. SN - 2192-9084 UR - http://nbn-resolving.de/urn:nbn:de:0009-14-51420 DO - 10.2195/lj_Proc_hormes_en_202012_01 ID - hormes2020 ER -Download
Wordbib
<?xml version="1.0" encoding="UTF-8"?> <b:Sources SelectedStyle="" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" > <b:Source> <b:Tag>hormes2020</b:Tag> <b:SourceType>ArticleInAPeriodical</b:SourceType> <b:Year>2020</b:Year> <b:PeriodicalTitle>Logistics Journal : Proceedings</b:PeriodicalTitle> <b:Volume>2020</b:Volume> <b:Issue>12</b:Issue> <b:Url>http://nbn-resolving.de/urn:nbn:de:0009-14-51420</b:Url> <b:Url>http://dx.doi.org/10.2195/lj_Proc_hormes_en_202012_01</b:Url> <b:Author> <b:Author><b:NameList> <b:Person><b:Last>Hormes</b:Last><b:First>Fabian</b:First></b:Person> <b:Person><b:Last>Siala</b:Last><b:First>Amin</b:First></b:Person> <b:Person><b:Last>Lieb</b:Last><b:First>Christian</b:First></b:Person> <b:Person><b:Last>Fottner</b:Last><b:First>Johannes</b:First></b:Person> </b:NameList></b:Author> </b:Author> <b:Title>Fleet Sizing of Dynamically Routed In-plant Milk-run Vehicles Based on a Genetic Algorithm</b:Title> <b:Comments>In-plant milk-run (MR) systems enable efficient supply of assembly lines in small lot sizes. One major chal-lenge for MR systems are demand fluctuations and short-term changes within schedules. Dynamic control strategies aim at increasing flexibility and efficiency of MR systems in volatile environments. This paper presents an application-oriented approach for determining the fleet size of an MR system with dynamically controlled routes based on a genetic algorithm. The approach is evaluated and discussed using a case study from a commercial vehicle manufacturer. The results show that the approach ena-bles effective analytical dimensioning of MR systems with dynamic routes. In addition, the case study indicates that the implementation of dynamic routes can lead to a reduction in fleet size.</b:Comments> </b:Source> </b:Sources>Download
ISI
PT Journal AU Hormes, F Siala, A Lieb, C Fottner, J TI Fleet Sizing of Dynamically Routed In-plant Milk-run Vehicles Based on a Genetic Algorithm SO Logistics Journal : Proceedings PY 2020 VL 2020 IS 12 DI 10.2195/lj_Proc_hormes_en_202012_01 DE Genetische Algorithmen; In-plant milk-run; Routenzugsysteme; Routing-Probleme; Steuerungsstrategien; control strategies; genetic algorithms; routing problems AB In-plant milk-run (MR) systems enable efficient supply of assembly lines in small lot sizes. One major chal-lenge for MR systems are demand fluctuations and short-term changes within schedules. Dynamic control strategies aim at increasing flexibility and efficiency of MR systems in volatile environments. This paper presents an application-oriented approach for determining the fleet size of an MR system with dynamically controlled routes based on a genetic algorithm. The approach is evaluated and discussed using a case study from a commercial vehicle manufacturer. The results show that the approach ena-bles effective analytical dimensioning of MR systems with dynamic routes. In addition, the case study indicates that the implementation of dynamic routes can lead to a reduction in fleet size. ERDownload
Mods
<mods> <titleInfo> <title>Fleet Sizing of Dynamically Routed In-plant Milk-run Vehicles Based on a Genetic Algorithm</title> </titleInfo> <name type="personal"> <namePart type="family">Hormes</namePart> <namePart type="given">Fabian</namePart> </name> <name type="personal"> <namePart type="family">Siala</namePart> <namePart type="given">Amin</namePart> </name> <name type="personal"> <namePart type="family">Lieb</namePart> <namePart type="given">Christian</namePart> </name> <name type="personal"> <namePart type="family">Fottner</namePart> <namePart type="given">Johannes</namePart> </name> <abstract>In-plant milk-run (MR) systems enable efficient supply of assembly lines in small lot sizes. One major chal-lenge for MR systems are demand fluctuations and short-term changes within schedules. Dynamic control strategies aim at increasing flexibility and efficiency of MR systems in volatile environments. This paper presents an application-oriented approach for determining the fleet size of an MR system with dynamically controlled routes based on a genetic algorithm. The approach is evaluated and discussed using a case study from a commercial vehicle manufacturer. The results show that the approach ena-bles effective analytical dimensioning of MR systems with dynamic routes. In addition, the case study indicates that the implementation of dynamic routes can lead to a reduction in fleet size.</abstract> <subject> <topic>Genetische Algorithmen</topic> <topic>In-plant milk-run</topic> <topic>Routenzugsysteme</topic> <topic>Routing-Probleme</topic> <topic>Steuerungsstrategien</topic> <topic>control strategies</topic> <topic>genetic algorithms</topic> <topic>routing problems</topic> </subject> <classification authority="ddc">620</classification> <relatedItem type="host"> <genre authority="marcgt">periodical</genre> <genre>academic journal</genre> <titleInfo> <title>Logistics Journal : Proceedings</title> </titleInfo> <part> <detail type="volume"> <number>2020</number> </detail> <detail type="issue"> <number>12</number> </detail> <date>2020</date> </part> </relatedItem> <identifier type="issn">2192-9084</identifier> <identifier type="urn">urn:nbn:de:0009-14-51420</identifier> <identifier type="doi">10.2195/lj_Proc_hormes_en_202012_01</identifier> <identifier type="uri">http://nbn-resolving.de/urn:nbn:de:0009-14-51420</identifier> <identifier type="citekey">hormes2020</identifier> </mods>Download
Full Metadata
Bibliographic Citation | Logistics Journal : referierte Veröffentlichungen, Vol. 2020, Iss. 12 |
---|---|
Title |
Fleet Sizing of Dynamically Routed In-plant Milk-run Vehicles Based on a Genetic Algorithm (eng) |
Author | Fabian Hormes, Amin Siala, Christian Lieb, Johannes Fottner |
Language | eng |
Abstract | In-plant milk-run (MR) systems enable efficient supply of assembly lines in small lot sizes. One major chal-lenge for MR systems are demand fluctuations and short-term changes within schedules. Dynamic control strategies aim at increasing flexibility and efficiency of MR systems in volatile environments. This paper presents an application-oriented approach for determining the fleet size of an MR system with dynamically controlled routes based on a genetic algorithm. The approach is evaluated and discussed using a case study from a commercial vehicle manufacturer. The results show that the approach ena-bles effective analytical dimensioning of MR systems with dynamic routes. In addition, the case study indicates that the implementation of dynamic routes can lead to a reduction in fleet size. Innerbetriebliche Routenzugsysteme (RZS) ermöglichen eine effiziente Materialversorgung von Montagelinien in kleinen Losgrößen. Eine Herausforderung für RZS sind Bedarfsschwankungen und kurzfristige Änderungen in Fahrplänen. Das Ziel von dynamischen Steuerungsstrategien ist die Erhöhung der Flexibilität und Effizienz von RZS in volatilen Umgebungen. Dieser Beitrag stellt einen anwendungsorientierten Ansatz zur Bestimmung der Flottengröße eines RZS mit dynamischen Routen basierend auf einem genetischen Algorithmus vor. Der Ansatz wird anhand einer Fallstudie eines Nutzfahrzeugherstellers evaluiert und diskutiert. Die Ergebnisse zeigen, dass der vorgestellte Ansatz eine effektive analytische Dimensionierung von RZS mit dynamischen Routen ermöglicht. Die Fallstudie legt zudem nahe, dass der Einsatz von dynamischen Routen zu einer Reduzierung der benötigten Anzahl an Fahrzeugen führen kann. |
Subject | Genetische Algorithmen, In-plant milk-run, Routenzugsysteme, Routing-Probleme, Steuerungsstrategien, control strategies, genetic algorithms, routing problems |
DDC | 620 |
Rights | fDPPL |
URN: | urn:nbn:de:0009-14-51420 |
DOI | https://doi.org/10.2195/lj_Proc_hormes_en_202012_01 |