Proceedings
Camera-assisted Pick-by-feel
Wearable assistiertes Kommissionieren
-
M.Sc.
Réné Grzeszick
Arbeitsgruppe Mustererkennung in eingebetteten Systemen, Fakultät Informatik, TU Dortmund
-
Dipl.-Inform.
Sascha Feldhorst
Lehrstuhl für Förder- und Lagerwesen, Fakultät Maschinenbau, TU Dortmund
-
Dipl.-Inform.
Christian Mosblech
prismat Gesellschaft für Softwaresysteme und Unternehmensberatung mbH
-
Prof. Dr.-Ing.
Gernot A. Fink
Arbeitsgruppe Mustererkennung in eingebetteten Systemen, Fakultät Informatik, TU Dortmund
-
Prof. Dr.
Michael ten Hompel
Lehrstuhl für Förder- und Lagerwesen, Fakultät Maschinenbau, TU Dortmund
Zusammenfassungen
In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented.
In diesem Beitrag wird ein neuartiges System zur Unterstützung des manuellen Kommissionierprozesses vorgestellt. Im Gegensatz zu existierenden Systemen wird taktiles Feedback genutzt um den Einfluss auf die audio-visuellen Sinne zu reduzieren. Eine vom Kommissionierer getragene Smartwatch und eine kostengünstige Kamera werden kombiniert mit Methoden der Aktivitätserkennung und der visuellen Objekterkennung, die den Kommissionierprozess überwachen. Zuerst wird mit Hilfe der Aktivitätserkennung bestimmt ob ein Gut vom Kommissionierer gegriffen wird. Im Folgenden werden eine Barcode-Erkennung und eine visuelle Objektklassifikation durch ein tiefes Faltungsnetz genutzt um zu erkennen ob das korrekte Gut gegriffen wurde. Neben der konzeptionellen Ausarbeitung werden Umsetzungsdetails erläutert und abschließend wird eine Auswertung unter realistischen Bedingungen sowie auf einem öffentlich verfügbaren Datensatz vorgestellt.
Keywords
Empfohlene Zitierweise
¶
Grzeszick R, Feldhorst S, Mosblech C, Fink GA, ten Hompel M (2016). Camera-assisted Pick-by-feel. Logistics Journal : Proceedings, Vol. 2016. (urn:nbn:de:0009-14-44556)
Bitte geben Sie beim Zitieren dieses Artikels die exakte URL und das Datum Ihres letzten Besuchs bei dieser Online-Adresse an.
Anzahl der Zitationen
Besuchen Sie Google Scholar um herauszufinden, wie oft dieser Artikel zitiert wurde.