You are here: Home Proceedings
Document Actions

Citation and metadata

Recommended citation

Grzeszick R, Feldhorst S, Mosblech C, Fink GA, ten Hompel M (2016). Camera-assisted Pick-by-feel. Logistics Journal : Proceedings, Vol. 2016. (urn:nbn:de:0009-14-44556)

Download Citation

Endnote

%0 Journal Article
%T Camera-assisted Pick-by-feel
%A Grzeszick, Réné
%A Feldhorst, Sascha
%A Mosblech, Christian
%A Fink, Gernot A.
%A ten Hompel, Michael
%J Logistics Journal : Proceedings
%D 2016
%V 2016
%N 10
%@ 2192-9084
%F grzeszick2016
%X In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented.
%L 620
%K Intralogistics
%K Intralogistik
%K Kommissionieren
%K Kommissionierung
%K Deep Learning
%K Bild Klassifikation
%K Bild Retrieval
%K Aktivitätserkennung
%R 10.2195/lj_Proc_grzeszick_en_201610_01
%U http://nbn-resolving.de/urn:nbn:de:0009-14-44556
%U http://dx.doi.org/10.2195/lj_Proc_grzeszick_en_201610_01

Download

Bibtex

@Article{grzeszick2016,
  author = 	"Grzeszick, R{\'e}n{\'e}
		and Feldhorst, Sascha
		and Mosblech, Christian
		and Fink, Gernot A.
		and ten Hompel, Michael",
  title = 	"Camera-assisted Pick-by-feel",
  journal = 	"Logistics Journal : Proceedings",
  year = 	"2016",
  volume = 	"2016",
  number = 	"10",
  keywords = 	"Intralogistics; Intralogistik; Kommissionieren; Kommissionierung; Deep Learning; Bild Klassifikation; Bild Retrieval; Aktivit{\"a}tserkennung",
  abstract = 	"In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented.",
  issn = 	"2192-9084",
  doi = 	"10.2195/lj_Proc_grzeszick_en_201610_01",
  url = 	"http://nbn-resolving.de/urn:nbn:de:0009-14-44556"
}

Download

RIS

TY  - JOUR
AU  - Grzeszick, Réné
AU  - Feldhorst, Sascha
AU  - Mosblech, Christian
AU  - Fink, Gernot A.
AU  - ten Hompel, Michael
PY  - 2016
DA  - 2016//
TI  - Camera-assisted Pick-by-feel
JO  - Logistics Journal : Proceedings
VL  - 2016
IS  - 10
KW  - Intralogistics
KW  - Intralogistik
KW  - Kommissionieren
KW  - Kommissionierung
KW  - Deep Learning
KW  - Bild Klassifikation
KW  - Bild Retrieval
KW  - Aktivitätserkennung
AB  - In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented.
SN  - 2192-9084
UR  - http://nbn-resolving.de/urn:nbn:de:0009-14-44556
DO  - 10.2195/lj_Proc_grzeszick_en_201610_01
ID  - grzeszick2016
ER  - 
Download

Wordbib

<?xml version="1.0" encoding="UTF-8"?>
<b:Sources SelectedStyle="" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography"  xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" >
<b:Source>
<b:Tag>grzeszick2016</b:Tag>
<b:SourceType>ArticleInAPeriodical</b:SourceType>
<b:Year>2016</b:Year>
<b:PeriodicalTitle>Logistics Journal : Proceedings</b:PeriodicalTitle>
<b:Volume>2016</b:Volume>
<b:Issue>10</b:Issue>
<b:Url>http://nbn-resolving.de/urn:nbn:de:0009-14-44556</b:Url>
<b:Url>http://dx.doi.org/10.2195/lj_Proc_grzeszick_en_201610_01</b:Url>
<b:Author>
<b:Author><b:NameList>
<b:Person><b:Last>Grzeszick</b:Last><b:First>Réné</b:First></b:Person>
<b:Person><b:Last>Feldhorst</b:Last><b:First>Sascha</b:First></b:Person>
<b:Person><b:Last>Mosblech</b:Last><b:First>Christian</b:First></b:Person>
<b:Person><b:Last>Fink</b:Last><b:First>Gernot A.</b:First></b:Person>
<b:Person><b:Last>ten Hompel</b:Last><b:First>Michael</b:First></b:Person>
</b:NameList></b:Author>
</b:Author>
<b:Title>Camera-assisted Pick-by-feel</b:Title>
<b:Comments>In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented.</b:Comments>
</b:Source>
</b:Sources>
Download

ISI

PT Journal
AU Grzeszick, R
   Feldhorst, S
   Mosblech, C
   Fink, G
   ten Hompel, M
TI Camera-assisted Pick-by-feel
SO Logistics Journal : Proceedings
PY 2016
VL 2016
IS 10
DI 10.2195/lj_Proc_grzeszick_en_201610_01
DE Intralogistics; Intralogistik; Kommissionieren; Kommissionierung; Deep Learning; Bild Klassifikation; Bild Retrieval; Aktivitätserkennung
AB In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented.
ER

Download

Mods

<mods>
  <titleInfo>
    <title>Camera-assisted Pick-by-feel</title>
  </titleInfo>
  <name type="personal">
    <namePart type="family">Grzeszick</namePart>
    <namePart type="given">Réné</namePart>
  </name>
  <name type="personal">
    <namePart type="family">Feldhorst</namePart>
    <namePart type="given">Sascha</namePart>
  </name>
  <name type="personal">
    <namePart type="family">Mosblech</namePart>
    <namePart type="given">Christian</namePart>
  </name>
  <name type="personal">
    <namePart type="family">Fink</namePart>
    <namePart type="given">Gernot A.</namePart>
  </name>
  <name type="personal">
    <namePart type="family">ten Hompel</namePart>
    <namePart type="given">Michael</namePart>
  </name>
  <abstract>In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented.</abstract>
  <subject>
    <topic>Intralogistics</topic>
    <topic>Intralogistik</topic>
    <topic>Kommissionieren</topic>
    <topic>Kommissionierung</topic>
    <topic>Deep Learning</topic>
    <topic>Bild Klassifikation</topic>
    <topic>Bild Retrieval</topic>
    <topic>Aktivitätserkennung</topic>
  </subject>
  <classification authority="ddc">620</classification>
  <relatedItem type="host">
    <genre authority="marcgt">periodical</genre>
    <genre>academic journal</genre>
    <titleInfo>
      <title>Logistics Journal : Proceedings</title>
    </titleInfo>
    <part>
      <detail type="volume">
        <number>2016</number>
      </detail>
      <detail type="issue">
        <number>10</number>
      </detail>
      <date>2016</date>
    </part>
  </relatedItem>
  <identifier type="issn">2192-9084</identifier>
  <identifier type="urn">urn:nbn:de:0009-14-44556</identifier>
  <identifier type="doi">10.2195/lj_Proc_grzeszick_en_201610_01</identifier>
  <identifier type="uri">http://nbn-resolving.de/urn:nbn:de:0009-14-44556</identifier>
  <identifier type="citekey">grzeszick2016</identifier>
</mods>
Download

Full Metadata