Citation and metadata
Recommended citation
Grzeszick R, Feldhorst S, Mosblech C, Fink GA, ten Hompel M (2016). Camera-assisted Pick-by-feel. Logistics Journal : Proceedings, Vol. 2016. (urn:nbn:de:0009-14-44556)
Download Citation
Endnote
%0 Journal Article %T Camera-assisted Pick-by-feel %A Grzeszick, Réné %A Feldhorst, Sascha %A Mosblech, Christian %A Fink, Gernot A. %A ten Hompel, Michael %J Logistics Journal : Proceedings %D 2016 %V 2016 %N 10 %@ 2192-9084 %F grzeszick2016 %X In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented. %L 620 %K Intralogistics %K Intralogistik %K Kommissionieren %K Kommissionierung %K Deep Learning %K Bild Klassifikation %K Bild Retrieval %K Aktivitätserkennung %R 10.2195/lj_Proc_grzeszick_en_201610_01 %U http://nbn-resolving.de/urn:nbn:de:0009-14-44556 %U http://dx.doi.org/10.2195/lj_Proc_grzeszick_en_201610_01Download
Bibtex
@Article{grzeszick2016, author = "Grzeszick, R{\'e}n{\'e} and Feldhorst, Sascha and Mosblech, Christian and Fink, Gernot A. and ten Hompel, Michael", title = "Camera-assisted Pick-by-feel", journal = "Logistics Journal : Proceedings", year = "2016", volume = "2016", number = "10", keywords = "Intralogistics; Intralogistik; Kommissionieren; Kommissionierung; Deep Learning; Bild Klassifikation; Bild Retrieval; Aktivit{\"a}tserkennung", abstract = "In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented.", issn = "2192-9084", doi = "10.2195/lj_Proc_grzeszick_en_201610_01", url = "http://nbn-resolving.de/urn:nbn:de:0009-14-44556" }Download
RIS
TY - JOUR AU - Grzeszick, Réné AU - Feldhorst, Sascha AU - Mosblech, Christian AU - Fink, Gernot A. AU - ten Hompel, Michael PY - 2016 DA - 2016// TI - Camera-assisted Pick-by-feel JO - Logistics Journal : Proceedings VL - 2016 IS - 10 KW - Intralogistics KW - Intralogistik KW - Kommissionieren KW - Kommissionierung KW - Deep Learning KW - Bild Klassifikation KW - Bild Retrieval KW - Aktivitätserkennung AB - In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented. SN - 2192-9084 UR - http://nbn-resolving.de/urn:nbn:de:0009-14-44556 DO - 10.2195/lj_Proc_grzeszick_en_201610_01 ID - grzeszick2016 ER -Download
Wordbib
<?xml version="1.0" encoding="UTF-8"?> <b:Sources SelectedStyle="" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" > <b:Source> <b:Tag>grzeszick2016</b:Tag> <b:SourceType>ArticleInAPeriodical</b:SourceType> <b:Year>2016</b:Year> <b:PeriodicalTitle>Logistics Journal : Proceedings</b:PeriodicalTitle> <b:Volume>2016</b:Volume> <b:Issue>10</b:Issue> <b:Url>http://nbn-resolving.de/urn:nbn:de:0009-14-44556</b:Url> <b:Url>http://dx.doi.org/10.2195/lj_Proc_grzeszick_en_201610_01</b:Url> <b:Author> <b:Author><b:NameList> <b:Person><b:Last>Grzeszick</b:Last><b:First>Réné</b:First></b:Person> <b:Person><b:Last>Feldhorst</b:Last><b:First>Sascha</b:First></b:Person> <b:Person><b:Last>Mosblech</b:Last><b:First>Christian</b:First></b:Person> <b:Person><b:Last>Fink</b:Last><b:First>Gernot A.</b:First></b:Person> <b:Person><b:Last>ten Hompel</b:Last><b:First>Michael</b:First></b:Person> </b:NameList></b:Author> </b:Author> <b:Title>Camera-assisted Pick-by-feel</b:Title> <b:Comments>In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented.</b:Comments> </b:Source> </b:Sources>Download
ISI
PT Journal AU Grzeszick, R Feldhorst, S Mosblech, C Fink, G ten Hompel, M TI Camera-assisted Pick-by-feel SO Logistics Journal : Proceedings PY 2016 VL 2016 IS 10 DI 10.2195/lj_Proc_grzeszick_en_201610_01 DE Intralogistics; Intralogistik; Kommissionieren; Kommissionierung; Deep Learning; Bild Klassifikation; Bild Retrieval; Aktivitätserkennung AB In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented. ERDownload
Mods
<mods> <titleInfo> <title>Camera-assisted Pick-by-feel</title> </titleInfo> <name type="personal"> <namePart type="family">Grzeszick</namePart> <namePart type="given">Réné</namePart> </name> <name type="personal"> <namePart type="family">Feldhorst</namePart> <namePart type="given">Sascha</namePart> </name> <name type="personal"> <namePart type="family">Mosblech</namePart> <namePart type="given">Christian</namePart> </name> <name type="personal"> <namePart type="family">Fink</namePart> <namePart type="given">Gernot A.</namePart> </name> <name type="personal"> <namePart type="family">ten Hompel</namePart> <namePart type="given">Michael</namePart> </name> <abstract>In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented.</abstract> <subject> <topic>Intralogistics</topic> <topic>Intralogistik</topic> <topic>Kommissionieren</topic> <topic>Kommissionierung</topic> <topic>Deep Learning</topic> <topic>Bild Klassifikation</topic> <topic>Bild Retrieval</topic> <topic>Aktivitätserkennung</topic> </subject> <classification authority="ddc">620</classification> <relatedItem type="host"> <genre authority="marcgt">periodical</genre> <genre>academic journal</genre> <titleInfo> <title>Logistics Journal : Proceedings</title> </titleInfo> <part> <detail type="volume"> <number>2016</number> </detail> <detail type="issue"> <number>10</number> </detail> <date>2016</date> </part> </relatedItem> <identifier type="issn">2192-9084</identifier> <identifier type="urn">urn:nbn:de:0009-14-44556</identifier> <identifier type="doi">10.2195/lj_Proc_grzeszick_en_201610_01</identifier> <identifier type="uri">http://nbn-resolving.de/urn:nbn:de:0009-14-44556</identifier> <identifier type="citekey">grzeszick2016</identifier> </mods>Download
Full Metadata
Bibliographic Citation | Logistics Journal : referierte Veröffentlichungen, Vol. 2016, Iss. 10 |
---|---|
Title |
Camera-assisted Pick-by-feel (eng) |
Author | Réné Grzeszick, Sascha Feldhorst, Christian Mosblech, Gernot A. Fink, Michael ten Hompel |
Language | eng |
Abstract | In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented. In diesem Beitrag wird ein neuartiges System zur Unterstützung des manuellen Kommissionierprozesses vorgestellt. Im Gegensatz zu existierenden Systemen wird taktiles Feedback genutzt um den Einfluss auf die audio-visuellen Sinne zu reduzieren. Eine vom Kommissionierer getragene Smartwatch und eine kostengünstige Kamera werden kombiniert mit Methoden der Aktivitätserkennung und der visuellen Objekterkennung, die den Kommissionierprozess überwachen. Zuerst wird mit Hilfe der Aktivitätserkennung bestimmt ob ein Gut vom Kommissionierer gegriffen wird. Im Folgenden werden eine Barcode-Erkennung und eine visuelle Objektklassifikation durch ein tiefes Faltungsnetz genutzt um zu erkennen ob das korrekte Gut gegriffen wurde. Neben der konzeptionellen Ausarbeitung werden Umsetzungsdetails erläutert und abschließend wird eine Auswertung unter realistischen Bedingungen sowie auf einem öffentlich verfügbaren Datensatz vorgestellt. |
Subject | Intralogistics, Intralogistik, Kommissionieren, Kommissionierung, Deep Learning, Bild Klassifikation, Bild Retrieval, Aktivitätserkennung |
DDC | 620 |
Rights | fDPPL |
URN: | urn:nbn:de:0009-14-44556 |
DOI | https://doi.org/10.2195/lj_Proc_grzeszick_en_201610_01 |