Citation and metadata
Recommended citation
Kamagaew A, ten Hompel M (2013). Method of collaborative detection of autonomous transport vehicles based on laser rangefinder data. Logistics Journal, Vol. 2013. (urn:nbn:de:0009-14-37662)
Download Citation
Endnote
%0 Journal Article %T Method of collaborative detection of autonomous transport vehicles based on laser rangefinder data %A Kamagaew, Andreas %A ten Hompel, Michael %J Logistics Journal %D 2013 %V 2013 %N 10 %@ 2192-9084 %F kamagaew2013 %X To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles. %L 620 %K Bildverarbeitung %K Internet der Dinge %K Internet of Things %K Intralogistics %K Logistics %K Logistik %K Logistiknetzwerke %K Sensormodelle %K Sensornetzwerk %K Synchronisierung %K Synchronization %K Zellulare Transportfahrzeuge %K cellular transport vehicle %K computer vision %K sensor models %K wireless sensor network %R 10.2195/lj_Proc_kamagaew_de_201310_01 %U http://nbn-resolving.de/urn:nbn:de:0009-14-37662 %U http://dx.doi.org/10.2195/lj_Proc_kamagaew_de_201310_01Download
Bibtex
@Article{kamagaew2013, author = "Kamagaew, Andreas and ten Hompel, Michael", title = "Method of collaborative detection of autonomous transport vehicles based on laser rangefinder data", journal = "Logistics Journal", year = "2013", volume = "2013", number = "10", keywords = "Bildverarbeitung; Internet der Dinge; Internet of Things; Intralogistics; Logistics; Logistik; Logistiknetzwerke; Sensormodelle; Sensornetzwerk; Synchronisierung; Synchronization; Zellulare Transportfahrzeuge; cellular transport vehicle; computer vision; sensor models; wireless sensor network", abstract = "To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles.", issn = "2192-9084", doi = "10.2195/lj_Proc_kamagaew_de_201310_01", url = "http://nbn-resolving.de/urn:nbn:de:0009-14-37662" }Download
RIS
TY - JOUR AU - Kamagaew, Andreas AU - ten Hompel, Michael PY - 2013 DA - 2013// TI - Method of collaborative detection of autonomous transport vehicles based on laser rangefinder data JO - Logistics Journal VL - 2013 IS - 10 KW - Bildverarbeitung KW - Internet der Dinge KW - Internet of Things KW - Intralogistics KW - Logistics KW - Logistik KW - Logistiknetzwerke KW - Sensormodelle KW - Sensornetzwerk KW - Synchronisierung KW - Synchronization KW - Zellulare Transportfahrzeuge KW - cellular transport vehicle KW - computer vision KW - sensor models KW - wireless sensor network AB - To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles. SN - 2192-9084 UR - http://nbn-resolving.de/urn:nbn:de:0009-14-37662 DO - 10.2195/lj_Proc_kamagaew_de_201310_01 ID - kamagaew2013 ER -Download
Wordbib
<?xml version="1.0" encoding="UTF-8"?> <b:Sources SelectedStyle="" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" > <b:Source> <b:Tag>kamagaew2013</b:Tag> <b:SourceType>ArticleInAPeriodical</b:SourceType> <b:Year>2013</b:Year> <b:PeriodicalTitle>Logistics Journal</b:PeriodicalTitle> <b:Volume>2013</b:Volume> <b:Issue>10</b:Issue> <b:Url>http://nbn-resolving.de/urn:nbn:de:0009-14-37662</b:Url> <b:Url>http://dx.doi.org/10.2195/lj_Proc_kamagaew_de_201310_01</b:Url> <b:Author> <b:Author><b:NameList> <b:Person><b:Last>Kamagaew</b:Last><b:First>Andreas</b:First></b:Person> <b:Person><b:Last>ten Hompel</b:Last><b:First>Michael</b:First></b:Person> </b:NameList></b:Author> </b:Author> <b:Title>Method of collaborative detection of autonomous transport vehicles based on laser rangefinder data</b:Title> <b:Comments>To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles.</b:Comments> </b:Source> </b:Sources>Download
ISI
PT Journal AU Kamagaew, A ten Hompel, M TI Method of collaborative detection of autonomous transport vehicles based on laser rangefinder data SO Logistics Journal PY 2013 VL 2013 IS 10 DI 10.2195/lj_Proc_kamagaew_de_201310_01 DE Bildverarbeitung; Internet der Dinge; Internet of Things; Intralogistics; Logistics; Logistik; Logistiknetzwerke; Sensormodelle; Sensornetzwerk; Synchronisierung; Synchronization; Zellulare Transportfahrzeuge; cellular transport vehicle; computer vision; sensor models; wireless sensor network AB To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles. ERDownload
Mods
<mods> <titleInfo> <title>Method of collaborative detection of autonomous transport vehicles based on laser rangefinder data</title> </titleInfo> <name type="personal"> <namePart type="family">Kamagaew</namePart> <namePart type="given">Andreas</namePart> </name> <name type="personal"> <namePart type="family">ten Hompel</namePart> <namePart type="given">Michael</namePart> </name> <abstract>To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles.</abstract> <subject> <topic>Bildverarbeitung</topic> <topic>Internet der Dinge</topic> <topic>Internet of Things</topic> <topic>Intralogistics</topic> <topic>Logistics</topic> <topic>Logistik</topic> <topic>Logistiknetzwerke</topic> <topic>Sensormodelle</topic> <topic>Sensornetzwerk</topic> <topic>Synchronisierung</topic> <topic>Synchronization</topic> <topic>Zellulare Transportfahrzeuge</topic> <topic>cellular transport vehicle</topic> <topic>computer vision</topic> <topic>sensor models</topic> <topic>wireless sensor network</topic> </subject> <classification authority="ddc">620</classification> <relatedItem type="host"> <genre authority="marcgt">periodical</genre> <genre>academic journal</genre> <titleInfo> <title>Logistics Journal</title> </titleInfo> <part> <detail type="volume"> <number>2013</number> </detail> <detail type="issue"> <number>10</number> </detail> <date>2013</date> </part> </relatedItem> <identifier type="issn">2192-9084</identifier> <identifier type="urn">urn:nbn:de:0009-14-37662</identifier> <identifier type="doi">10.2195/lj_Proc_kamagaew_de_201310_01</identifier> <identifier type="uri">http://nbn-resolving.de/urn:nbn:de:0009-14-37662</identifier> <identifier type="citekey">kamagaew2013</identifier> </mods>Download
Full Metadata
Bibliographic Citation | Logistics Journal : referierte Veröffentlichungen, Vol. 2013, Iss. 10 |
---|---|
Title |
Method of collaborative detection of autonomous transport vehicles based on laser rangefinder data (eng) Verfahren zur kooperativen Erkennung autonomer Transportfahrzeuge basierend auf Laserscannerdaten (ger) |
Author | Andreas Kamagaew, Michael ten Hompel |
Language | eng |
Abstract | To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles. Für die Flexibilisierung des innerbetrieblichen Materialflusses werden autonome Transportfahrzeuge eingesetzt, um wechselnden Leistungsanforderungen gerecht zu werden. In diesem sogenannten Zellularen Transportsystem, bestehend aus einer Vielzahl kleinskaliger Transportfahrzeuge, sollen Fahrzeuge in der Lage sein, untereinander zu kommunizieren, sich gegenseitig zu erkennen und die Umwelt wahrzunehmen. Durch die Bereitstellung von dezentral akquirierten Informationen anderer Transportentitäten können bessere Entscheidungen zur Wegfindung und Kollisionsvermeidung getroffen werden. Dieses Paper ist ein Beitrag für die gemeinsame Nutzung von Sensordaten innerhalb eines Fahrzeugschwarms. |
Subject | Bildverarbeitung, Internet der Dinge, Internet of Things, Intralogistics, Logistics, Logistik, Logistiknetzwerke, Sensormodelle, Sensornetzwerk, Synchronisierung, Synchronization, Zellulare Transportfahrzeuge, cellular transport vehicle, computer vision, sensor models, wireless sensor network |
DDC | 620 |
Rights | fDPPL |
URN: | urn:nbn:de:0009-14-37662 |
DOI | https://doi.org/10.2195/lj_Proc_kamagaew_de_201310_01 |